High-Throughput Phenotyping in Plants pp 179-268

Part of the Methods in Molecular Biology book series (MIMB, volume 918)

Arabidopsis thaliana Membrane Lipid Molecular Species and Their Mass Spectral Analysis

  • Thilani Samarakoon
  • Sunitha Shiva
  • Kaleb Lowe
  • Pamela Tamura
  • Mary R. Roth
  • Ruth Welti
Protocol

Abstract

Herein, current approaches to electrospray ionization mass spectrometry-based analyses of membrane lipid molecular species found in Arabidopsis thaliana are summarized. Additionally, the identities of over 500 reported membrane lipid molecular species are assembled.

Key words:

Arabidopsis thaliana Electrospray ionization Galactolipids Lipid profiling Mass spectrometry Membrane lipids Phospholipids Sphingolipids Sterols and derivatives Sulfolipid 

References

  1. 1.
    Welti R, Wang X (2004) Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7:337–344PubMedCrossRefGoogle Scholar
  2. 2.
    Welti R, Shah J, LeVine S et al (2005) High- throughput lipid profiling to identify and characterize genes involved in lipid metabolism, signaling, and stress response. In: Feng L, Prestwich GD (eds) Functional lipidomics. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Welti R, Roth MR, Deng Y et al (2007) Lipidomics: ESI MS/MS-based profiling to determine the function of genes involved in metabolism of complex lipids. In: Nikolau B (ed) Plant metabolomics. Springer, DordrechtGoogle Scholar
  4. 4.
    Isaac G, Jeannotte R, Esch SW et al (2007) New mass-spectrometry-based strategies for lipids. Gen Eng Rev 28:129–157CrossRefGoogle Scholar
  5. 5.
    Welti R, Shah J, Li W et al (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12:2494–2506PubMedCrossRefGoogle Scholar
  6. 6.
    Welti R (2010) Plant lipidomics. In: AOCS lipid library. http://lipidlibrary.aocs.org/plantbio/plantlipidomics/index.htm
  7. 7.
    Li-Beisson Y, Shorrosh B, Beisson F et al (2010) Acyl lipid metabolism. Arabidopsis Book 8:1–65. http://aralip.plantbiology.msu.edu/data/tab_methods.pdf Google Scholar
  8. 8.
    Welti R, Li W, Li M et al (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002PubMedCrossRefGoogle Scholar
  9. 9.
    Shiva S, Vu HS, Roth MR et al Lipidomic analysis of plant membrane lipids by direct infusion tandem mass spectrometry. In: Munnik T, Heilmann I (eds) Plant lipid signaling protocols, methods in molecular biology. Humana Press, New York (in press)Google Scholar
  10. 10.
    Nandi A, Krothapalli K, Buseman C et al (2003) The Arabidopsis thaliana sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell 15:2383–2398PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang W, Wang C, Qin C et al (2003) The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295PubMedCrossRefGoogle Scholar
  12. 12.
    Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene suppressor of fatty acid desaturase deficiency1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16:465–477PubMedCrossRefGoogle Scholar
  13. 13.
    Li W, Li M, Zhang W et al (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433PubMedCrossRefGoogle Scholar
  14. 14.
    Li M, Zhang W, Welti R et al (2006) Double knockouts of phospholipase Dζ1 and ζ2 in Arabidopsis affect root elongation under phosphate limitation, but do not affect root hair patterning. Plant Physiol 140:761–770PubMedCrossRefGoogle Scholar
  15. 15.
    Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation: roles of PLDζ1 and PLDζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761PubMedCrossRefGoogle Scholar
  16. 16.
    Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F et al (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770PubMedCrossRefGoogle Scholar
  17. 17.
    Chen J, Burke JJ, Xin Z et al (2006) Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant Cell Environ 29:1437–1448PubMedCrossRefGoogle Scholar
  18. 18.
    Fritz M, Lokstein H, Hackenberg D et al (2007) Chanelling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625PubMedCrossRefGoogle Scholar
  19. 19.
    Yang W, Devaiah S, Pan X et al (2007) AtPLAI is an LRR-containing acyl hydrolase involved in basal jasmonic acid product ion and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128PubMedCrossRefGoogle Scholar
  20. 20.
    Devaiah S, Pan X, Hong Y et al (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50:950–957PubMedCrossRefGoogle Scholar
  21. 21.
    Kachroo A, Shanklin J, Whittle E et al (2007) The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol 63:257–271PubMedCrossRefGoogle Scholar
  22. 22.
    Li W, Wang R, Li M et al (2008) Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem 283:461–468PubMedCrossRefGoogle Scholar
  23. 23.
    Maeda H, Sage TL, Isaac G et al (2008) Tocopherols modulate extra-plastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20:452–470PubMedCrossRefGoogle Scholar
  24. 24.
    Hong Y, Pan X, Welti R et al (2008) Alterations of phospholipase Dα3 change Arabidopsis response to salinity and water deficits. Plant Cell 20:803–816PubMedCrossRefGoogle Scholar
  25. 25.
    Hong Y, Pan X, Welti R et al (2008) The effect of phospholipase Dα3 on Arabidopsis response to hyperosmotic stress and glucose. Plant Signal Behav 3:1099–1100PubMedCrossRefGoogle Scholar
  26. 26.
    Xiao S, Li HY, Zhang JP et al (2008) Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Mol Biol 68:571–583PubMedCrossRefGoogle Scholar
  27. 27.
    Chen M, Markham JE, Dietrich CR et al (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20:1862–1878PubMedCrossRefGoogle Scholar
  28. 28.
    Chen Q-F, Shi X, Chye M-L (2008) Overexpression of the Arabidopsis 10-Kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148:304–315PubMedCrossRefGoogle Scholar
  29. 29.
    Hong Y, Devaiah SP, Bahn S et al (2009) Phospholipase Dε and phosphatidic acid enhance Arabidopsis growth. Plant J 58:376–387PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang Y, Zhu H, Zhang Q et al (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Q, Fry J, Rajashekar C et al (2009) Membrane polar lipid changes in zoysiagrass rhizomes and their potential role in freezing tolerance. J Am Soc Hort Sci 134:322–328Google Scholar
  32. 32.
    Xia Y, Gao Q, Yu K et al (2009) An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5:151–165PubMedCrossRefGoogle Scholar
  33. 33.
    Reina-Pinto J, Voisin D, Kurdyukov S et al (2009) Misexpression of fatty acid elongation1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process. Plant Cell 21:1252–1272PubMedCrossRefGoogle Scholar
  34. 34.
    Keogh M, Courtney PD, Kinney AJ et al (2009) Functional characterization of phospholipid N-methyltransferases from Arabidopsis and soybean. J Biol Chem 284:15439–15447PubMedCrossRefGoogle Scholar
  35. 35.
    Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector. Proc Natl Acad Sci USA 106:20532–20537PubMedCrossRefGoogle Scholar
  36. 36.
    Bais P, Moon SM, He K et al (2010) PlantMetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152:1807–1816PubMedCrossRefGoogle Scholar
  37. 37.
    Peters C, Li M, Narasimhan R et al (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642–2659PubMedCrossRefGoogle Scholar
  38. 38.
    Yu L, Nie J, Cao C et al (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773PubMedCrossRefGoogle Scholar
  39. 39.
    Shen W, Li JQ, Dauk M et al (2010) Metabolic and transcriptional responses of glycerolipid pathways to a perturbation of glycerol 3-phosphate metabolism in Arabidopsis. J Biol Chem 285:22957–22965PubMedCrossRefGoogle Scholar
  40. 40.
    Du Z-Y, Xiao S, Chen QF et al (2010) Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol 152:1585–1597PubMedCrossRefGoogle Scholar
  41. 41.
    Chen H, Xiong L (2010) myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. J Biol Chem 285:24238–24247PubMedCrossRefGoogle Scholar
  42. 42.
    Chen M, Thelen JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22:77–90PubMedCrossRefGoogle Scholar
  43. 43.
    Chen QF, Xian S, Qi W et al (2010) The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol 186:843–855PubMedCrossRefGoogle Scholar
  44. 44.
    Kim H, Vijayan P, Carlsson AS et al (2010) A mutation in the LPAT1 gene suppresses the sensitivity of fab1 plants to low temperature. Plant Physiol 153:1135–1143PubMedCrossRefGoogle Scholar
  45. 45.
    Li M, Bahn SC, Guo L et al (2011) Alterations of patatin-related phospholipase pPLAIIIβ reveal effects of membrane lipid metabolism on cellulose content and anisotropic cell expansion in Arabidopsis. Plant Cell 23:1107–1123PubMedCrossRefGoogle Scholar
  46. 46.
    Burgos A, Szymanski J, Seiwert B et al (2011) Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. Plant J 66:656–666PubMedCrossRefGoogle Scholar
  47. 47.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  48. 48.
    Brügger B, Erben G, Sandhoff R et al (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94:2339–2344PubMedCrossRefGoogle Scholar
  49. 49.
    Xiao S, Gao W, Chen Q-F et al (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22:1463–1482PubMedCrossRefGoogle Scholar
  50. 50.
    Welti R, Wang X, Williams TD (2003) Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal Biochem 314:149–152PubMedCrossRefGoogle Scholar
  51. 51.
    Zhou Z, Marepally SR, Nune DS et al (2011) LipidomeDB data calculation environment: online processing of direct-infusion mass spectral data for lipid profiles. Lipids 46:879–884PubMedCrossRefGoogle Scholar
  52. 52.
    Devaiah SP, Roth MR, Baughman E et al (2006) Quantitative profiling of polar glycerolipid species and the role of phospholipase Dα1 in defining the lipid species in Arabidopsis tissues. Phytochemistry 67:1907–1924PubMedCrossRefGoogle Scholar
  53. 53.
    Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314PubMedCrossRefGoogle Scholar
  54. 54.
    Markham J, Li J, Cahoon EB et al (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281:22684–22694PubMedCrossRefGoogle Scholar
  55. 55.
    Chao D-Y, Gable K, Chen M et al (2011) Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. Plant Cell 23:1061–1081PubMedCrossRefGoogle Scholar
  56. 56.
    Chen M, Markham JE, Dietrich CR et al (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20:1862–1878PubMedCrossRefGoogle Scholar
  57. 57.
    Tsegaye Y, Richardson CG, Bravo JE et al (2007) Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. J Biol Chem 282:28195–28206PubMedCrossRefGoogle Scholar
  58. 58.
    Chen M, Markham JE, Cahoon EB (2011) Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low temperature performance in Arabidopsis. Plant J. doi:10.1111/j.1365-313X.2011.04829.x
  59. 59.
    Saucedo-García M, Guevara-García A, González-Solís A et al (2011) MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. New Phytol 191:943–957PubMedCrossRefGoogle Scholar
  60. 60.
    Markham JE, Molino D, Gissot L et al (2011) Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23:2362–2378PubMedCrossRefGoogle Scholar
  61. 61.
    Roudier F, Gissot L, Beaudoin F et al (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–375PubMedCrossRefGoogle Scholar
  62. 62.
    Wewer V, Dombrick I, vom Dorp K et al (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipid Res 52:1039–1054PubMedCrossRefGoogle Scholar
  63. 63.
    Schrick K, Shiva S, Arpin J et al (2011) Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Lipids. doi:10.1007/s11745-011-3602-9
  64. 64.
    Buseman C, Tamura P, Sparks A et al (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39PubMedCrossRefGoogle Scholar
  65. 65.
    Andersson MX, Hamberg M, Kourtchenko O et al (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana. Formation of a novel oxo-phytodienoic acid-containing galactolipid Arabidopside E. J Biol Chem 281:31528–31537PubMedCrossRefGoogle Scholar
  66. 66.
    Glauser G, Grata E, Rudaz S et al (2008) High-resolution profiling of oxylipin containing galactolipids in Arabidopsis extracts by ultraperformance liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:3154–3160PubMedCrossRefGoogle Scholar
  67. 67.
    Hisamatsu Y, Goto N, Hasegawa K et al (2003) Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Tetrahedron Lett 44:5553–5556CrossRefGoogle Scholar
  68. 68.
    Hisamatsu Y, Goto N, Sekiguchi M et al (2005) Oxylipins arabidopsides C and D from Arabidopsis thaliana. J Nat Prod 68:600–603PubMedCrossRefGoogle Scholar
  69. 69.
    Kourtchenko O, Andersson MX, Hamberg M et al (2007) Oxo-phytodienoic acid containing galactolipids in Arabidopsis: Jasmonate ­signaling dependence. Plant Physiol 145:1658–1669PubMedCrossRefGoogle Scholar
  70. 70.
    Stelmach BA, Muller A, Hennig P et al (2001) A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838PubMedCrossRefGoogle Scholar
  71. 71.
    Vu HS, Tamura P, Galeva NA et al (2012) Direct infusion mass spectrometry of oxylipin-containing Arabidopsis thaliana membrane lipids reveals varied patterns in different stress responses. Plant Physiol 158:324–339Google Scholar
  72. 72.
    Li C, Guan Z, Liu D et al (2011) Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli. Proc Natl Acad Sci USA 108:11387–11392PubMedCrossRefGoogle Scholar
  73. 73.
    Kim YH, Choi J-S, Yoo JS et al (1999) Structural identification of glycerolipid molecular species isolated from Cyanobacterium synechocystis sp. PCC 6803 using fast atom bombardment tandem mass spectrometry. Anal Biochem 267:260–270PubMedCrossRefGoogle Scholar
  74. 74.
    Yang W, Zheng Y, Bahn SC et al (2012) The patatin-containing phospholipase A pPLAIIα modulates oxylipin formation and water loss in Arabidopsis thaliana. Mol Plant 5:452–460Google Scholar
  75. 75.
    Hsu FF, Turk J, Williams TD et al (2007) Electrospray ionization multiple stage quadrupole ion-trap and tandem quadrupole mass spectrometric studies on phosphatidylglycerol from Arabidopsis leaves. J Am Soc Mass Spectrom 18:783–790PubMedCrossRefGoogle Scholar
  76. 76.
    Nakajyo H, Hisamatsu Y, Sekiguchi M et al (2006) Arabidopside F, a new oxylipin from Arabidopsis thaliana. Heterocycles 69:295–301CrossRefGoogle Scholar
  77. 77.
    Okazaki Y, Shimojima M, Sawada Y et al (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thilani Samarakoon
    • 1
  • Sunitha Shiva
    • 1
  • Kaleb Lowe
    • 1
  • Pamela Tamura
    • 1
  • Mary R. Roth
    • 1
  • Ruth Welti
    • 1
  1. 1.Kansas Lipidomics Research Center, Division of BiologyKansas State UniversityManhattanUSA

Personalised recommendations