Chromatin Immunoprecipitation Analysis of Xenopus Embryos

  • Robert C. Akkers
  • Ulrike G. Jacobi
  • Gert Jan C. Veenstra
Part of the Methods in Molecular Biology book series (MIMB, volume 917)


Chromatin immunoprecipitation (ChIP) is a powerful technique to study epigenetic regulation and transcription factor binding events in the nucleus. It is based on immune-affinity capture of epitopes that have been cross-linked to genomic DNA in vivo. A readout of the extent to which the epitope is associated with particular genomic regions can be obtained by quantitative PCR (ChIP-qPCR), microarray hybridization (ChIP-chip), or deep sequencing (ChIP-seq). ChIP can be used for molecular and quantitative analyses of histone modifications, transcription factors, and elongating RNA polymerase II at specific loci. It can also be applied to assess the cellular state of transcriptional activation or repression as a predictor of the cells’ capabilities and potential. Another possibility is to employ ChIP to characterize genomes, as histone modifications and binding events occur at specific and highly characteristic genomic elements and locations. This chapter provides a step-by-step protocol of ChIP using early Xenopus embryos and discusses potential pitfalls and other issues relevant for successful probing of protein–genome interactions by ChIP-qPCR and ChIP-seq.

Key words

Chromatin immunoprecipitation ChIP Genome-wide location analysis Epigenome Transcription Xenopus 


  1. 1.
    Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937PubMedCrossRefGoogle Scholar
  2. 2.
    Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395PubMedGoogle Scholar
  3. 3.
    Mendenhall EM, Bernstein BE (2008) Chromatin state maps: new technologies, new insights. Curr Opin Genet Dev 18:109PubMedCrossRefGoogle Scholar
  4. 4.
    Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10:605PubMedCrossRefGoogle Scholar
  5. 5.
    Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99PubMedCrossRefGoogle Scholar
  6. 6.
    Sachs LM, Shi YB (2000) Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc Natl Acad Sci U S A 97:13138PubMedCrossRefGoogle Scholar
  7. 7.
    Jallow Z, Jacobi UG, Weeks DL, Dawid IB, Veenstra GJC (2004) Specialized and redundant roles of TBP and a vertebrate-specific TBP paralog in embryonic gene regulation in Xenopus. Proc Natl Acad Sci U S A 101:13525PubMedCrossRefGoogle Scholar
  8. 8.
    Blythe SA, Reid CD, Kessler DS, Klein PS (2009) Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev Dyn 238:1422PubMedCrossRefGoogle Scholar
  9. 9.
    Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633PubMedCrossRefGoogle Scholar
  10. 10.
    Akkers RC, vanHeeringen SJ, Manak JR, Green RD, Stunnenberg HG, Veenstra GJC (2010) ChIP-chip designs to interrogate the genome of Xenopus embryos for transcription factor binding and epigenetic regulation. PLoS One 5:e8820PubMedCrossRefGoogle Scholar
  11. 11.
    Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs K-J, Stunnenberg HG, Veenstra GJC (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17:425PubMedCrossRefGoogle Scholar
  12. 12.
    van Heeringen SJ, Akhtar W, Jacobi UG, Akkers RC, Suzuki Y, Veenstra GJC (2011)Nucleotide composition-linked divergence of vertebrate core promoter architecture. Genome Res 21:410–421. doi: 10.1101/gr.111724.110 Google Scholar
  13. 13.
    Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11:476PubMedGoogle Scholar
  14. 14.
    Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107:11PubMedCrossRefGoogle Scholar
  15. 15.
    O’Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38:835PubMedCrossRefGoogle Scholar
  16. 16.
    Dahl JA, Collas P (2008) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3:1032PubMedCrossRefGoogle Scholar
  17. 17.
    Adli M, Zhu J, Bernstein BE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Methods 7:615PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Robert C. Akkers
    • 1
  • Ulrike G. Jacobi
    • 1
  • Gert Jan C. Veenstra
    • 2
  1. 1.Department of Molecular Biology, Nijmegen Center of Molecular Life SciencesRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Department of Molecular Developmental Biology, Nijmegen Center of Molecular Life SciencesRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations