Advertisement

Xenopus tropicalis as a Model Organism for Genetics and Genomics: Past, Present, and Future

  • Robert M. Grainger
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 917)

Abstract

Xenopus tropicalis was introduced as a model system for genetic, and then genomic research, in the early 1990s, complementing work on the widely used model organism Xenopus laevis. Its shorter generation time and diploid genome has facilitated a number of experimental approaches. It has permitted multigenerational experiments (e.g., preparation of transgenic lines and generation of mutant lines) that have added powerful approaches for research by the Xenopus community. As a diploid animal, its simpler genome was sequenced before X. laevis, and has provided a highly valuable resource indispensable for all Xenopus researchers. As more sophisticated transgenic technologies for manipulating gene expression are developed, and mutations, particularly null mutations, are identified in widely studied genes involved in critical cellular and developmental processes, researchers will increasingly turn to X. tropicalis for definitive analysis of complex genetic pathways. This chapter describes the historical and conceptual development of X. tropicalis as a genetic and genomic model system for higher vertebrate development.

Key words

Xenopus tropicalis Experimental model system Genetics Natural mutations Mutagenesis screen Genomics Genome sequencing 

Notes

Acknowledgements

The author gratefully acknowledges contributions to developing the X. tropicalis system from lab members Lyle Zimmerman, Nicolas Hirsch, Selina Noramly, Jei Chae, Hui Wang, Hong Jin, Hajime Ogino, Takuya Nakayama, Marilyn Fisher, Margaret Fish and Matthew Etzell. Research on X. tropicalis was supported by grants to R.M.G. from the National Institutes of Health RR013221, EY019000 and EY017400. Grants to R.M.G. from NIH also support a National Xenopus Resource (RR025867) and National TILLING Resource (HD065713).

References

  1. 1.
    Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27(12):507–515PubMedCrossRefGoogle Scholar
  2. 2.
    Brown DD, Gurdon JB (1964) Absence of ribosomal RNA synthesis in the anucleolate mutant of Xenopus laevis. Proc Natl Acad Sci U S A 51:139–146PubMedCrossRefGoogle Scholar
  3. 3.
    Krotoski DM, Reinschmidt DC, Tompkins R (1985) Developmental mutants isolated from wild-caught Xenopus laevis by gynogenesis and inbreeding. J Exp Zool 233(3):443–449PubMedCrossRefGoogle Scholar
  4. 4.
    Droin A (1992) The developmental mutants of Xenopus. Int J Dev Biol 36(4):455–464PubMedGoogle Scholar
  5. 5.
    Graf JD, Kobel HR (1991) Genetics of Xenopus laevis. Methods Cell Biol 36:19–34PubMedCrossRefGoogle Scholar
  6. 6.
    Voss SR, Epperlein HH, Tanaka EM (2009) Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009(8):pdb emo128PubMedCrossRefGoogle Scholar
  7. 7.
    Porter KR (1939) Androgenetic development of the egg of Rana pipiens. Biol Bull 77:233–257CrossRefGoogle Scholar
  8. 8.
    Freed JJ, Mezger-Freed L (1970) Stable haploid cultured cell lines from frog embryos. Proc Natl Acad Sci U S A 65(2):337–344PubMedCrossRefGoogle Scholar
  9. 9.
    Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38(5):455–463PubMedCrossRefGoogle Scholar
  10. 10.
    Gurdon JB, Byrne JA (2003) The first half-century of nuclear transplantation. Proc Natl Acad Sci U S A 100(14):8048–8052PubMedCrossRefGoogle Scholar
  11. 11.
    de Sa RO, Hillis DM (1990) Phylogenetic relationships of the pipid frogs Xenopus and Silurana: an integration of ribosomal DNA and morphology. Mol Biol Evol 7(4):365–376PubMedGoogle Scholar
  12. 12.
    Hellsten U, Khokha MK, Grammer TC, Harland RM, Richardson P, Rokhsar DS (2007) Accelerated gene evolution and subfunctionalization in the pseudotetraploid frog Xenopus laevis. BMC Biol 5:31PubMedCrossRefGoogle Scholar
  13. 13.
    Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V et al (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328(5978): 633–636PubMedCrossRefGoogle Scholar
  14. 14.
    Amaya E, Offield MF, Grainger RM (1998) Frog genetics: Xenopus tropicalis jumps into the future. Trends Genet 14(7):253–255PubMedCrossRefGoogle Scholar
  15. 15.
    Hirsch N, Zimmerman LB, Grainger RM (2002) Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn 225(4):422–433PubMedCrossRefGoogle Scholar
  16. 16.
    Khokha MK, Chung C, Bustamante EL, Gaw LW, Trott KA, Yeh J et al (2002) Techniques and probes for the study of Xenopus tropicalis development. Dev Dyn 225(4):499–510PubMedCrossRefGoogle Scholar
  17. 17.
    Morin RD, Chang E, Petrescu A, Liao N, Griffith M, Chow W et al (2006) Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling. Genome Res 16(6):796–803PubMedCrossRefGoogle Scholar
  18. 18.
    Tymowska J (1973) Karyotype analysis of Xenopus tropicalis Gray, Pipidae. Cytogenet Cell Genet 12(5):297–304PubMedCrossRefGoogle Scholar
  19. 19.
    Kashiwagi K, Kashiwagi A, Kurabayashi A, Hanada H, Nakajima K, Okada M et al (2010) Xenopus tropicalis: an ideal experimental animal in amphibia. Exp Anim 59(4):395–405PubMedCrossRefGoogle Scholar
  20. 20.
    Noramly S, Zimmerman L, Cox A, Aloise R, Fisher M, Grainger RM (2005) A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis. Mech Dev 122(3):273–287PubMedCrossRefGoogle Scholar
  21. 21.
    Tompkins R (1978) Triploid and gynogenetic diploid Xenopus laevis. J Exp Zool 203:251–256CrossRefGoogle Scholar
  22. 22.
    Kawahara H (1978) Production of triploid and gynogenetic diploid Xenopus by cold treatment. Dev Growth Differ 20(3):227–236CrossRefGoogle Scholar
  23. 23.
    Henry JJ, Grainger RM (1990) Early tissue interactions leading to embryonic lens formation in Xenopus laevis. Dev Biol 141:149–163PubMedCrossRefGoogle Scholar
  24. 24.
    Grammer TC, Khokha MK, Lane MA, Lam K, Harland RM (2005) Identification of mutants in inbred Xenopus tropicalis. Mech Dev 122(3):263–272PubMedCrossRefGoogle Scholar
  25. 25.
    Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4(3):189–202PubMedCrossRefGoogle Scholar
  26. 26.
    Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A (1999) Mouse ENU mutagenesis. Hum Mol Genet 8(10):1955–1963PubMedCrossRefGoogle Scholar
  27. 27.
    Riley BB, Grunwald DJ (1995) Efficient induction of point mutations allowing recovery of specific locus mutations in zebrafish. Proc Natl Acad Sci U S A 92(13):5997–6001PubMedCrossRefGoogle Scholar
  28. 28.
    Goda T, Abu-Daya A, Carruthers S, Clark MD, Stemple DL, Zimmerman LB (2006) Genetic screens for mutations affecting development of Xenopus tropicalis. PLoS Genet 2(6):e91PubMedCrossRefGoogle Scholar
  29. 29.
    Beck CW, Izpisua Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238(6): 1226–1248PubMedCrossRefGoogle Scholar
  30. 30.
    Wells DE, Gutierrez L, Xu Z, Krylov V, Macha J, Blankenburg KP et al (2011) A genetic map of Xenopus tropicalis. Dev Biol 354(1):1–8PubMedCrossRefGoogle Scholar
  31. 31.
    Reinschmidt D, Friedman J, Hauth J, Ratner E, Cohen M, Miller M et al (1985) Gene-centromere mapping in Xenopus laevis. J Hered 76(5):345–347PubMedGoogle Scholar
  32. 32.
    Khokha MK, Krylov V, Reilly MJ, Gall JG, Bhattacharya D, Cheung CY et al (2009) Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev Dyn 238(6):1398–1446PubMedCrossRefGoogle Scholar
  33. 33.
    Abu-Daya A, Sater AK, Wells DE, Mohun TJ, Zimmerman LB (2009) Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. Dev Biol 336(1):20–29PubMedCrossRefGoogle Scholar
  34. 34.
    Abu-Daya A, Nishimoto S, Fairclough L, Mohun TJ, Logan MP, Zimmerman LB (2011) The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis. Dev Biol 349(2):204–212PubMedCrossRefGoogle Scholar
  35. 35.
    Geach TJ, Zimmerman LB (2010) Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol 10:75PubMedCrossRefGoogle Scholar
  36. 36.
    Sive HL, Grainger RM, Harland RM (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Press, Cold Spring HarborGoogle Scholar
  37. 37.
    Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, Richardson P (2002) Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev Dyn 225(4): 384–391PubMedCrossRefGoogle Scholar
  38. 38.
    Klein SL, Gerhard DS, Wagner L, Richardson P, Schriml LM, Sater AK et al (2006) Resources for genetic and genomic studies of Xenopus. Methods Mol Biol 322:1–16PubMedCrossRefGoogle Scholar
  39. 39.
    Vogel G (1999) Frog is a prince of a new model organism. Science 285(5424):25PubMedCrossRefGoogle Scholar
  40. 40.
    Stemple DL (2004) TILLING–a high-throughput harvest for functional genomics. Nat Rev Genet 5(2):145–150PubMedCrossRefGoogle Scholar
  41. 41.
    Winkler S, Schwabedissen A, Backasch D, Bokel C, Seidel C, Bonisch S et al (2005) Target-selected mutant screen by TILLING in Drosophila. Genome Res 15(5): 718–723PubMedCrossRefGoogle Scholar
  42. 42.
    Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7(6):454–459PubMedCrossRefGoogle Scholar
  43. 43.
    Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH et al (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 108(17):7052–7057PubMedCrossRefGoogle Scholar
  44. 44.
    Lund E, Sheets MD, Imboden SB, Dahlberg JE (2011) Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25(11):1121–1131PubMedCrossRefGoogle Scholar
  45. 45.
    Chen CM, Chiu SL, Shen W, Cline HT (2009) Co-expression of Argonaute2 enhances short hairpin RNA-induced RNA interference in Xenopus CNS neurons in vivo. Front Neurosci 3:63PubMedGoogle Scholar
  46. 46.
    Ogino H, Fisher M, Grainger RM (2008) Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification. Development 135(2):249–258PubMedCrossRefGoogle Scholar
  47. 47.
    Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG et al (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17(3):425–434PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations