Construction of Human Naive Antibody Gene Libraries

  • Michael Hust
  • André Frenzel
  • Torsten Meyer
  • Thomas Schirrmann
  • Stefan Dübel
Part of the Methods in Molecular Biology book series (MIMB, volume 907)


Human antibodies are valuable tools for proteome research and diagnostics. Furthermore, antibodies are a rapidly growing class of therapeutic agents, mainly for inflammation and cancer therapy. The first therapeutic antibodies are of murine origin and were chimerized or humanized. The later-developed antibodies are fully human antibodies. Here, two technologies are competing the hybridoma technology using transgenic mice with human antibody gene loci and antibody phage display. The starting point for the selection of human antibodies against any target is the construction of an antibody phage display gene library.

In this review we describe the construction of human naive and immune antibody gene libraries for antibody phage display.

Key words

Antibody Antibody gene library scFv Phage display 



We gratefully acknowledge the financial support by the German ministry of education and research (BMBF, SMP “Antibody Factory” in the NGFN2 program), EU FP6 coordination action ProteomeBinders (contract 026008), and FP7 collaborative projects AffinityProteome (contract 222635) and AFFINOMICS (contract 241481). This review is a combination and updated version of former reviews and book chapters (13, 15, 69).


  1. 1.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317PubMedCrossRefGoogle Scholar
  2. 2.
    Clackson T, Hoogenboom HR, Griffiths AD, Winter G (1991) Making antibody fragments using phage display libraries. Nature 352(624–8):1907718Google Scholar
  3. 3.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554PubMedCrossRefGoogle Scholar
  4. 4.
    Barbas CF, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153PubMedCrossRefGoogle Scholar
  6. 6.
    Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucl Acids Res 19:4133–4137PubMedCrossRefGoogle Scholar
  7. 7.
    Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318PubMedCrossRefGoogle Scholar
  8. 8.
    Hust M, Maiss E, Jacobsen H-J, Reinard T (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106:225–233PubMedCrossRefGoogle Scholar
  9. 9.
    Kirsch M, Hülseweh B, Nacke C, Rülker T, Schirrmann T, Marschall H-J, Hust M, Dübel S (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Moghaddam A, Borgen T, Stacy J, Kausmally L, Simonsen B, Marvik OJ, Brekke OH, Braunagel M (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139–155PubMedCrossRefGoogle Scholar
  11. 11.
    Schütte M, Thullier P, Pelat T, Wezler X, Rosenstock P, Hinz D, Kirsch MI, Hasenberg M, Frank R, Schirrmann T et al (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One 4:e6625PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hust M, Dübel S, Schirrmann T (2007) Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 408:243–255PubMedCrossRefGoogle Scholar
  13. 13.
    Schirrmann T, Hust M (2010) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 651:177–209PubMedCrossRefGoogle Scholar
  14. 14.
    Alonso-Ruiz A, Pijoan JI, Ansuategui E, Urkaregi A, Calabozo M, Quintana A (2008) Tumor necrosis factor alpha drugs in rheumatoid arthritis: systematic review and metaanalysis of efficacy and safety. BMC Musculoskelet Disord 9:52PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Schirrmann T, Meyer T, Schütte M, Frenzel A, Hust M (2011) Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 16:412–426PubMedCrossRefGoogle Scholar
  16. 16.
    Thie H, Meyer T, Schirrmann T, Hust M, Dübel S (2008) Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 9:439–446PubMedCrossRefGoogle Scholar
  17. 17.
    Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314PubMedCrossRefGoogle Scholar
  18. 18.
    Wallace DJ, Stohl W, Furie RA, Lisse JR, McKay JD, Merrill JT, Petri MA, Ginzler EM, Chatham WW, McCune WJ et al (2009) A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum 61:1168–1178PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Mazumdar S (2009) Raxibacumab. MAbs 1:531–538PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA-K, Persson A, Ottosson J, Wernérus H, Nilsson P et al (2008) A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteomics 7:2019–2027PubMedCrossRefGoogle Scholar
  21. 21.
    Dübel S, Stoevesandt O, Taussig MJ, Hust M (2010) Generating recombinant antibodies to the complete human proteome. Trends Biotechnol 28:333–339PubMedCrossRefGoogle Scholar
  22. 22.
    Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22:8–14PubMedCrossRefGoogle Scholar
  23. 23.
    Taussig MJ, Stoevesandt O, Borrebaeck CAK, Bradbury AR, Cahill D, Cambillau C, de Daruvar A, Dübel S, Eichler J, Frank R et al (2007) ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat Methods 4:13–17PubMedCrossRefGoogle Scholar
  24. 24.
    Wingren C, James P, Borrebaeck CAK (2009) Strategy for surveying the proteome using affinity proteomics and mass spectrometry. Proteomics 9:1511–1517PubMedCrossRefGoogle Scholar
  25. 25.
    Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D et al (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159–170PubMedCrossRefGoogle Scholar
  26. 26.
    Mersmann M, Meier D, Mersmann J, Helmsing S, Nilsson P, Gräslund S, Structural Genomics Consortium, Colwill K, Hust M, Dübel S (2010) Towards proteome scale antibody selections using phage display. N Biotechnol 27:118–128Google Scholar
  27. 27.
    Pershad K, Pavlovic JD, Gräslund S, Nilsson P, Colwill K, Karatt-Vellatt A, Schofield DJ, Dyson MR, Pawson T, Kay BK et al (2010) Generating a panel of highly specific antibodies to 20 human SH2 domains by phage display. Protein Eng Des Sel 23:279–288PubMedCrossRefGoogle Scholar
  28. 28.
    Buckler DR, Park A, Viswanathan M, Hoet RM, Ladner RC (2008) Screening isolates from antibody phage-display libraries. Drug Discov Today 13:318–324PubMedCrossRefGoogle Scholar
  29. 29.
    Hallborn J, Carlsson R (2002) Automated screening procedure for high-throughput generation of antibody fragments. Biotechniques Suppl:30–37PubMedGoogle Scholar
  30. 30.
    Konthur Z, Hust M, Dübel S (2005) Perspectives for systematic in vitro antibody generation. Gene 364:19–29PubMedCrossRefGoogle Scholar
  31. 31.
    Duggan JM, Coates DM, Ulaeto DO (2001) Isolation of single-chain antibody fragments against Venezuelan equine encephalomyelitis virus from two different immune sources. Viral Immunol 14:263–273PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer T, Stratmann-Selke J, Meens J, Schirrmann T, Gerlach GF, Frank R, Dübel S, Strutzberg-Minder K, Hust M (2011) Isolation of scFv fragments specific to OmpD of Salmonella Typhimurium. Vet Microbiol 147:162–169PubMedCrossRefGoogle Scholar
  33. 33.
    Pitaksajjakul P, Lekcharoensuk P, Upragarin N, Barbas CF, Ibrahim MS, Ikuta K, Ramasoota P (2010) Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library. Biochem Biophys Res Commun 395:496–501PubMedCrossRefGoogle Scholar
  34. 34.
    Hunt AR, Frederickson S, Maruyama T, Roehrig JT, Blair CD (2010) The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity. PLoS Negl Trop Dis 4:e739PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kang X, Yang B-A, Hu Y, Zhao H, Xiong W, Yang Y, Si B, Zhu Q (2006) Human neutralizing Fab molecules against severe acute respiratory syndrome coronavirus generated by phage display. Clin Vaccine Immunol 13:953–957PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Pelat T, Hust M, Hale M, Lefranc M-P, Dübel S, Thullier P (2009) Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 9:60PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D, Lefranc M-P, Dübel S, Thullier P (2007) High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51:2758–2764PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Sun L, Lu X, Li C, Wang M, Liu Q, Li Z, Hu X, Li J, Liu F, Li Q et al (2009) Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses. PLoS One 4:e5476PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Pelat T, Hust M, Thullier P (2009) Obtention and engineering of non-human primate (NHP) antibodies for therapeutics. Mini Rev Med Chem 9:1633–1638PubMedCrossRefGoogle Scholar
  40. 40.
    Pelat T, Bedouelle H, Rees AR, Crennell SJ, Lefranc M-P, Thullier P (2008) Germline humanization of a non-human primate antibody that neutralizes the anthrax toxin, by in vitro and in silico engineering. J Mol Biol 384:1400–1407PubMedCrossRefGoogle Scholar
  41. 41.
    Pelat T, Thullier P (2009) Non-human primate immune libraries combined with germline humanization: an (almost) new, and powerful approach for the isolation of therapeutic antibodies. MAbs 1:377–381PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bradbury ARM, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455PubMedCrossRefGoogle Scholar
  44. 44.
    de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruïne AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230PubMedCrossRefGoogle Scholar
  45. 45.
    Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple SD, Clarke KF, Conquer JS, Crofts AM, Crowther SRE, Dyson MR et al (2007) Application of phage display to high throughput antibody generation and characterization. Genome Biol 8:R254PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315:1087–1097PubMedCrossRefGoogle Scholar
  47. 47.
    Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL, Kontermann RE, Jones PT, Low NM, Allison TJ (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 13:3245–3260PubMedGoogle Scholar
  48. 48.
    Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–21776PubMedCrossRefGoogle Scholar
  49. 49.
    Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H et al (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348PubMedCrossRefGoogle Scholar
  50. 50.
    Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wölle J, Plückthun A, Virnekäs B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57–86PubMedCrossRefGoogle Scholar
  51. 51.
    Rothe C, Urlinger S, Löhning C, Prassler J, Stark Y, Jäger U, Hubner B, Bardroff M, Pradel I, Boss M et al (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376:1182–1200PubMedCrossRefGoogle Scholar
  52. 52.
    Hust M, Dübel S (2005) Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol 295:71–96PubMedGoogle Scholar
  53. 53.
    Johansen LK, Albrechtsen B, Andersen HW, Engberg J (1995) pFab60: a new, efficient vector for expression of antibody Fab fragments displayed on phage. Protein Eng 8:1063–1067PubMedCrossRefGoogle Scholar
  54. 54.
    Little M, Welschof M, Braunagel M, Hermes I, Christ C, Keller A, Rohrbach P, Kürschner T, Schmidt S, Kleist C et al (1999) Generation of a large complex antibody library from multiple donors. J Immunol Methods 231:3–9PubMedCrossRefGoogle Scholar
  55. 55.
    Welschof M, Terness P, Kipriyanov SM, Stanescu D, Breitling F, Dörsam H, Dübel S, Little M, Opelz G (1997) The antigen-binding domain of a human IgG-anti-F(ab′)2 auto­antibody. Proc Natl Acad Sci U S A 94:1902–1907PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    McCafferty J, Fitzgerald KJ, Earnshaw J, Chiswell DJ, Link J, Smith R, Kenten J (1994) Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Appl Biochem Biotechnol 47:157–171PubMedCrossRefGoogle Scholar
  57. 57.
    Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Plückthun A (1997) Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods 201:35–55PubMedCrossRefGoogle Scholar
  58. 58.
    Akamatsu Y, Cole MS, Tso JY, Tsurushita N (1993) Construction of a human Ig combinatorial library from genomic V segments and synthetic CDR3 fragments. J Immunol 151:4651–4659PubMedGoogle Scholar
  59. 59.
    Hoogenboom HR, Winter G (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J Mol Biol 227:381–388PubMedCrossRefGoogle Scholar
  60. 60.
    Nissim A, Hoogenboom HR, Tomlinson IM, Flynn G, Midgley C, Lane D, Winter G (1994) Antibody fragments from a “single pot” phage display library as immunochemical reagents. EMBO J 13:692–698PubMedGoogle Scholar
  61. 61.
    Desiderio A, Franconi R, Lopez M, Villani ME, Viti F, Chiaraluce R, Consalvi V, Neri D, Benvenuto E (2001) A semi-synthetic repertoire of intrinsically stable antibody fragments derived from a single-framework scaffold. J Mol Biol 310:603–615PubMedCrossRefGoogle Scholar
  62. 62.
    Barbas CF, Bain JD, Hoekstra DM, Lerner RA (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci U S A 89:4457–4461PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Jirholt P, Ohlin M, Borrebaeck CA, Söderlind E (1998) Exploiting sequence space: shuffling in vivo formed complementarity determining regions into a master framework. Gene 215:471–476PubMedCrossRefGoogle Scholar
  64. 64.
    Söderlind E, Strandberg L, Jirholt P, Kobayashi N, Alexeiva V, Aberg AM, Nilsson A, Jansson B, Ohlin M, Wingren C et al (2000) Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol 18:852–856PubMedCrossRefGoogle Scholar
  65. 65.
    Hust M, Toleikis L, Dübel S (2007) Antibody phage display. In: Dübel S (ed) Handbook of therapeutic antibodies. Wiley-VCH, Weinheim, pp 45–68CrossRefGoogle Scholar
  66. 66.
    Løset GA, Løbersli I, Kavlie A, Stacy JE, Borgen T, Kausmally L, Hvattum E, Simonsen B, Hovda MB, Brekke OH (2005) Construction, evaluation and refinement of a large human antibody phage library based on the IgD and IgM variable gene repertoire. J Immunol Methods 299:47–62PubMedCrossRefGoogle Scholar
  67. 67.
    Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD et al (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95:6157–6162PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S (2007) Single chain Fab (scFab) fragment. BMC Biotechnol 7:14PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Hust M, Dübel S (2010) Human antibody gene libraries. In: Kontermann R, Dübel S (eds) Antibody engineering. Springer, Heidelberg, pp 65–84CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Michael Hust
    • 1
  • André Frenzel
    • 1
  • Torsten Meyer
    • 2
  • Thomas Schirrmann
    • 1
  • Stefan Dübel
    • 1
  1. 1.Institut für Biochemie und BiotechnologieTechische Universität BraunschweigBraunschweigGermany
  2. 2.Institute für Biochemie and BiotechnologieTechische Universität BraunschweigBraunschweigGermany

Personalised recommendations