Monoclonal Antibody Expression in Mammalian Cells

  • Richard Yi Zhang
  • Wenyan David ShenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 907)


In the past two decades, the production levels for monoclonal antibodies in mammalian expression systems have improved dramatically. Single cell productivity for monoclonal antibodies has increased 20–50 fold due to the improvements in expression hosts, expression vectors, cell culture media, and production processes. However, most of these improvements are proprietary to large pharmaceutical/biotech companies and involve large steel-tank bioreactors. Therefore, these processes are difficult for small companies and academic labs to reproduce. Transient expression in mammalian cells has recently been used very widely for monoclonal antibody expression. Cell line and expression vector engineering increased expression levels to several hundred milligrams per liter. The availability of highly effective transfection reagents and disposable bioreactors make the transient expression process an efficient and cost-effective way to make recombinant antibodies in large quantity. Here, we describe the protocols for small- to mid-scale transient expression of monoclonal antibodies in shake-flasks and for large-scale production in WAVE bioreactors.

Key words

293EBNA cells CHO cells Monoclonal antibody (mAb) Transient transfection WAVE bioreactor Cellbag 


  1. 1.
    Beck A, Wurch T, Reichert JM (2011) 6th Annual European Antibody Congress 2010: November 29–December 1, 2010, Geneva, Switzerland. MAbs 3:111–132PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774PubMedCrossRefGoogle Scholar
  3. 3.
    Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707PubMedCrossRefGoogle Scholar
  4. 4.
    Jones Susan Dana, Castillo Francisco J, Levine Howard L (2007) Advances in the development of therapeutic monoclonal antibodies. BioPharm Int 96–114Google Scholar
  5. 5.
    Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398PubMedCrossRefGoogle Scholar
  6. 6.
    Havenga MJ, Holterman L, Melis I, Smits S, Kaspers J, Heemskerk E, van der Vlugt R, Koldijk M, Schouten GJ, Hateboer G et al (2008) Serum-free transient protein production system based on adenoviral vector and PER.C6 technology: high yield and preserved bioactivity. Biotechnol Bioeng 100:273–283PubMedCrossRefGoogle Scholar
  7. 7.
    Barnes LM, Bentley CM, Dickson AJ (2000) Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 32:109–123PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY) 10:169–175CrossRefGoogle Scholar
  9. 9.
    Kaufman RJ, Schimke RT (1981) Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Mol Cell Biol 1:1069–1076PubMedCentralPubMedGoogle Scholar
  10. 10.
    Urlaub G, Kas E, Carothers AM, Chasin LA (1983) Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 33:405–412PubMedCrossRefGoogle Scholar
  11. 11.
    Kaufman RJ, Sharp PA (1982) Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene. J Mol Biol 159:601–621PubMedCrossRefGoogle Scholar
  12. 12.
    Ringold G, Dieckmann B, Lee F (1981) Co-expression and amplification of dihydrofolate reductase cDNA and the Escherichia coli XGPRT gene in Chinese hamster ovary cells. J Mol Appl Genet 1:165–175PubMedGoogle Scholar
  13. 13.
    Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (NY) 8:662–667CrossRefGoogle Scholar
  14. 14.
    de la Cruz Edmonds MC, Tellers M, Chan C, Salmon P, Robinson DK, Markusen J (2006) Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol Biotechnol 34:179–190PubMedCrossRefGoogle Scholar
  15. 15.
    Ye J, Alvin K, Latif H, Hsu A, Parikh V, Whitmer T, Tellers M, de la Cruz Edmonds MC, Ly J, Salmon P et al (2010) Rapid protein production using CHO stable transfection pools. Biotechnol Prog 26:1431–1437PubMedCrossRefGoogle Scholar
  16. 16.
    Andersen DC, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15:456–462PubMedCrossRefGoogle Scholar
  17. 17.
    Benton T, Chen T, McEntee M, Fox B, King D, Crombie R, Thomas TC, Bebbington C (2002) The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein. Cytotechnology 38:43–46PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Bianchi AA, McGrew JT (2003) High-level expression of full-length antibodies using trans-complementing expression vectors. Biotechnol Bioeng 84:439–444PubMedCrossRefGoogle Scholar
  19. 19.
    Kwaks TH, Barnett P, Hemrika W, Siersma T, Sewalt RG, Satijn DP, Brons JF, van Blokland R, Kwakman P, Kruckeberg AL et al (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol 21:553–558PubMedCrossRefGoogle Scholar
  20. 20.
    Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, De JM, Wurm F, Mermod N (2001) Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87:29–42PubMedCrossRefGoogle Scholar
  21. 21.
    Hacker DL, De JM, Wurm FM (2009) 25 Years of recombinant proteins from reactor-grown cells—where do we go from here? Biotechnol Adv 27:1023–1027PubMedCrossRefGoogle Scholar
  22. 22.
    Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684PubMedCrossRefGoogle Scholar
  23. 23.
    Girard P, Derouazi M, Baumgartner G, Bourgeois M, Jordan M, Jacko B, Wurm FM (2002) 100-Liter transient transfection. Cytotechnology 38:15–21PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237PubMedCrossRefGoogle Scholar
  25. 25.
    Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Meissner P, Pick H, Kulangara A, Chatellard P, Friedrich K, Wurm FM (2001) Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol Bioeng 75:197–203PubMedCrossRefGoogle Scholar
  27. 27.
    Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De JM, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36:e96PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Zhang J, Liu X, Bell A, To R, Baral TN, Azizi A, Li J, Cass B, Durocher Y (2009) Transient expression and purification of chimeric heavy chain antibodies. Protein Exp Purif 65:77–82CrossRefGoogle Scholar
  29. 29.
    Backliwal G, Hildinger M, Chenuet S, Dejesus M, Wurm FM (2008) Coexpression of acidic fibroblast growth factor enhances specific productivity and antibody titers in transiently transfected HEK293 cells. Nat Biotechnol 25:162–166Google Scholar
  30. 30.
    Backliwal G, Hildinger M, Kuettel I, Delegrange F, Hacker DL, Wurm FM (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189PubMedCrossRefGoogle Scholar
  31. 31.
    Rajendra Y, Kiseljak D, Baldi L, Hacker DL, Wurm FM (2011) A simple high-yielding process for transient gene expression in CHO cells. J Biotechnol 153:22–26PubMedCrossRefGoogle Scholar
  32. 32.
    Ye J, Kober V, Tellers M, Naji Z, Salmon P, Markusen JF (2009) High-level protein expression in scalable CHO transient transfection. Biotechnol Bioeng 103:542–551PubMedCrossRefGoogle Scholar
  33. 33.
    Codamo J, Munro TP, Hughes BS, Song M, Gray PP (2011) Enhanced CHO cell-based transient gene expression with the epi-CHO expression system. Mol Biotechnol 48:109–115PubMedCrossRefGoogle Scholar
  34. 34.
    Silla T, Haal I, Geimanen J, Janikson K, Abroi A, Ustav E, Ustav M (2005) Episomal maintenance of plasmids with hybrid origins in mouse cells. J Virol 79:15277–15288PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Product information and use protocols for FuGENE HD and X-tremeGENE HP DNA transfection reagents. 2011
  36. 36.
    Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Werner S, Eibl R, Lettenbauer C, Roll M, Eibl D, De JM, Zhang X, Stettler M, Tissot S, Burki C et al (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers—a Swiss contribution. Chimia (Aarau) 64:819–823CrossRefGoogle Scholar
  38. 38.
    Zhang X, Stettler M, De SD, Perrone M, Parolini N, Discacciati M, De JM, Hacker D, Quarteroni A, Wurm F (2010) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 115:33–53PubMedGoogle Scholar
  39. 39.
    Kalmbach A, Bordas R, Oncul AA, Thevenin D, Genzel Y, Reichl U (2011) Experimental characterization of flow conditions in 2- and 20-L bioreactors with wave-induced motion. Biotechnol Prog 27:402–409PubMedCrossRefGoogle Scholar
  40. 40.
    Raymond C, Tom R, Perret S, Moussouami P, L’abbe D, St-Laurent G, Durocher Y (2011) A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods 55(1):44–51PubMedCrossRefGoogle Scholar
  41. 41.
    Hami LS, Green C, Leshinsky N, Markham E, Miller K, Craig S (2004) GMP production and testing of Xcellerated T cells for the treatment of patients with CLL. Cytotherapy 6:554–562PubMedCrossRefGoogle Scholar
  42. 42.
    Franek F, Hohenwarter O, Katinger H (2000) Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnol Prog 16:688–692PubMedCrossRefGoogle Scholar
  43. 43.
    Franek F, Eckschlager T, Katinger H (2003) Enhancement of monoclonal antibody production by lysine-containing peptides. Biotechnol Prog 19:169–174PubMedCrossRefGoogle Scholar
  44. 44.
    Wulhfard S, Baldi L, Hacker DL, Wurm F (2010) Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. J Biotechnol 148:128–132PubMedCrossRefGoogle Scholar
  45. 45.
    Wulhfard S, Tissot S, Bouchet S, Cevey J, De JM, Hacker DL, Wurm FM (2008) Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol Prog 24:458–465PubMedCrossRefGoogle Scholar
  46. 46.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Accurus Biosciences IncDublinUSA
  2. 2.TEVA PharmaceuticalsHorshamUSA

Personalised recommendations