Media Composition: Energy Sources and Metabolism

  • Deirdre Zander-Fox
  • Michelle Lane
Part of the Methods in Molecular Biology book series (MIMB, volume 912)


The preparation of defined culture media for embryo development has progressed from simple chemically defined media based on Krebs-Ringer bicarbonate, supplemented with glucose, bovine plasma albumin, antibiotics and utilizing a CO2-bicarbonate buffering system to more complete systems based around studies on the physiology and metabolism of the mammalian embryo. Although the concentration of substrates used in media can vary, there are many components that are quintessentially important for embryo development such as energy sources, that play a vital role in regulation of metabolism and hence viability. Here we describe the role of energy substrates within culture media and outline assays which can be utilized to measure embryo metabolism as a mechanism for determining embryo physiology and viability.

Key words

Glucose Pyruvate Lactate Amino acid Developmental competence 


  1. 1.
    Leese HJ (1988) The formation and function of oviduct fluid. J Reprod Fertil 82(2): 843–856PubMedCrossRefGoogle Scholar
  2. 2.
    Leese HJ (1995) Metabolic control during preimplantation mammalian development. Hum Reprod Update 1(1):63–72PubMedCrossRefGoogle Scholar
  3. 3.
    Brinster RL (1967) Protein content of the mouse embryo during the first five days of development. J Reprod Fertil 13(3):413–420PubMedCrossRefGoogle Scholar
  4. 4.
    Leese HJ (1991) Metabolism of the preimplantation mammalian embryo. Oxf Rev Reprod Biol 13:35–72PubMedGoogle Scholar
  5. 5.
    Gardner DK et al (1996) Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril 65(2):349–353PubMedGoogle Scholar
  6. 6.
    Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99(2):673–679PubMedCrossRefGoogle Scholar
  7. 7.
    Casslen BG (1987) Free amino acids in human uterine fluid. Possible role of high taurine concentration. J Reprod Med 32(3):181–184PubMedGoogle Scholar
  8. 8.
    Miller JG, Schultz GA (1987) Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract. Biol Reprod 36(1):125–129PubMedCrossRefGoogle Scholar
  9. 9.
    Maas DH, Storey BT, Mastroianni L Jr (1977) Hydrogen ion and carbon dioxide content of the oviductal fluid of the rhesus monkey (Macaca mulatta). Fertil Steril 28(9): 981–985PubMedGoogle Scholar
  10. 10.
    Lane M, Gardner DK (1996) Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod 11(9): 1975–1978PubMedCrossRefGoogle Scholar
  11. 11.
    Lane M, Gardner DK (2005) Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev 17(3):371–378PubMedCrossRefGoogle Scholar
  12. 12.
    Biggers JD, Stern S (1973) Metabolism of the preimplantation mammalian embryo. Adv Reprod Physiol 6:1–59PubMedGoogle Scholar
  13. 13.
    Brinster RL (1965) Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil 10(2):227–240PubMedCrossRefGoogle Scholar
  14. 14.
    Wales RG, Whittingham (1973) The metabolism of specifically labelled lactate and pyruvate by two-cell mouse embryos. J Reprod Fertil 33(2):207–222PubMedCrossRefGoogle Scholar
  15. 15.
    Conaghan J et al (1993) Selection criteria for human embryo transfer: a comparison of pyruvate uptake and morphology. J Assist Reprod Genet 10(1):21–30PubMedCrossRefGoogle Scholar
  16. 16.
    Hardy K et al (1989) Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod 4(2):188–191PubMedGoogle Scholar
  17. 17.
    Gott AL et al (1990) Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod 5(1):104–108PubMedGoogle Scholar
  18. 18.
    Gardner DK et al (2001) Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril 76(6):1175–1180PubMedCrossRefGoogle Scholar
  19. 19.
    Biggers JD, Whittingham DG, Donahue RP (1967) The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA 58(2):560–567PubMedCrossRefGoogle Scholar
  20. 20.
    Whitten WK (1957) Culture of tubal ova. Nature 179(4569):1081–1082PubMedCrossRefGoogle Scholar
  21. 21.
    Brinster RL (1965) Studies on the development of mouse embryos in vitro. II. The effect of energy source. J Exp Zool 158:59–68PubMedCrossRefGoogle Scholar
  22. 22.
    Whitten WK (1956) Culture of tubal mouse ova. Nature 177(4498):96PubMedCrossRefGoogle Scholar
  23. 23.
    Brinster RL, Thomson JL (1966) Development of eight-cell mouse embryos in vitro. Exp Cell Res 42(2):308–315PubMedCrossRefGoogle Scholar
  24. 24.
    Daniel JC Jr, Krishnan RS (1967) Amino acid requirements for growth of the rabbit blastocyst in vitro. J Cell Physiol 70(2):155–160PubMedCrossRefGoogle Scholar
  25. 25.
    Martin KL, Leese HJ (1995) Role of glucose in mouse preimplantation embryo development. Mol Reprod Dev 40(4):436–443PubMedCrossRefGoogle Scholar
  26. 26.
    Pantaleon M, Scott J, Kaye PL (2008) Nutrient sensing by the early mouse embryo: hexosamine biosynthesis and glucose signaling during preimplantation development. Biol Reprod 78(4):595–600PubMedCrossRefGoogle Scholar
  27. 27.
    Lane M, Gardner DK (1998) Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum Reprod 13(4): 991–997PubMedCrossRefGoogle Scholar
  28. 28.
    Renard JP, Philippon A, Menezo Y (1980) In-vitro uptake of glucose by bovine blastocysts. J Reprod Fertil 58(1):161–164PubMedCrossRefGoogle Scholar
  29. 29.
    Gardner DK, Leese HJ (1987) Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool 242(1):103–105PubMedCrossRefGoogle Scholar
  30. 30.
    Van den Bergh M et al (2001) Glycolytic ­activity: a possible tool for human blastocyst selection. Reprod Biomed Online 3(Suppl 1):8Google Scholar
  31. 31.
    Menezo Y, Laviolette P (1972) Amino constituents of tubal secretions in the rabbit. Zymogram—proteins—free amino acids. Ann Biol Anim Biochim Biophys 12(3):383–396PubMedCrossRefGoogle Scholar
  32. 32.
    Gardner DK, Leese HJ (1990) Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J Reprod Fertil 88(1):361–368PubMedCrossRefGoogle Scholar
  33. 33.
    Epstein CJ, Smith SA (1973) Amino acid uptake and protein synthesis in preimplantation mouse embryos. Dev Biol 33(1):171–184PubMedCrossRefGoogle Scholar
  34. 34.
    Lane M, Gardner DK (1997) Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 109(1):153–164PubMedCrossRefGoogle Scholar
  35. 35.
    Van Winkle LJ, Haghighat N, Campione AL (1990) Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool 253(2):215–219PubMedCrossRefGoogle Scholar
  36. 36.
    Dumoulin JC et al (1997) Taurine acts as an osmolyte in human and mouse oocytes and embryos. Biol Reprod 56(3):739–744PubMedCrossRefGoogle Scholar
  37. 37.
    Nasr-Esfahani MH, Winston NJ, Johnson MH (1992) Effects of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J Reprod Fertil 96(1):219–231PubMedCrossRefGoogle Scholar
  38. 38.
    Edwards LJ, Williams DA, Gardner DK (1998) Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod 13(12):3441–3448PubMedCrossRefGoogle Scholar
  39. 39.
    Dawson KM, Collins JL, Baltz JM (1998) Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol Reprod 59(2):225–232PubMedCrossRefGoogle Scholar
  40. 40.
    Wu F, Cholewa B, Mattson DL (2000) Characterization of l-arginine transporters in rat renal inner medullary collecting duct. Am J Physiol Regul Integr Comp Physiol 278(6):R1506–R1512PubMedGoogle Scholar
  41. 41.
    Dumoulin JC et al (1992) Temporal effects of taurine on mouse preimplantation development in vitro. Hum Reprod 7(3):403–407PubMedGoogle Scholar
  42. 42.
    Gardner DK, Lane M (1993) Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod 48(2):377–385PubMedCrossRefGoogle Scholar
  43. 43.
    Gardner DK, Lane M (1996) Alleviation of the ‘2-cell block’ and development to the ­blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod 11(12):2703–2712PubMedCrossRefGoogle Scholar
  44. 44.
    Kane MT, Carney EW, Bavister BD (1986) Vitamins and amino acids stimulate hamster blastocysts to hatch in vitro. J Exp Zool 239(3):429–432PubMedCrossRefGoogle Scholar
  45. 45.
    Bavister BD, Arlotto T (1990) Influence of single amino acids on the development of hamster one-cell embryos in vitro. Mol Reprod Dev 25(1):45–51PubMedCrossRefGoogle Scholar
  46. 46.
    Carney EW, Bavister BD (1987) Stimulatory and inhibitory effects of amino acids on the development of hamster eight-cell embryos in vitro. J In Vitro Fertil Embryo Transfer 4(3):162–167CrossRefGoogle Scholar
  47. 47.
    Gardner DK et al (1994) Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod 50(2):390–400PubMedCrossRefGoogle Scholar
  48. 48.
    Takahashi Y, First NL (1992) In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37(5):963–978PubMedCrossRefGoogle Scholar
  49. 49.
    Steeves TE, Gardner DK (1999) Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod 61(3):731–740PubMedCrossRefGoogle Scholar
  50. 50.
    Devreker F, Winston RM, Hardy K (1998) Glutamine improves human preimplantation development in vitro. Fertil Steril 69(2):293–299PubMedCrossRefGoogle Scholar
  51. 51.
    Devreker F et al (1999) Effects of taurine on human embryo development in vitro. Hum Reprod 14(9):2350–2356PubMedCrossRefGoogle Scholar
  52. 52.
    Eagle H (1959) Amino acid metabolism in mammalian cell cultures. Science 130(3373):432–437PubMedCrossRefGoogle Scholar
  53. 53.
    Houghton FD, Leese HJ (2004) Metabolism and developmental competence of the ­preimplantation embryo. Eur J Obstet Gynecol Reprod Biol 115(Suppl):S92–S96PubMedCrossRefGoogle Scholar
  54. 54.
    Brison DR et al (2004) Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 19(10):2319–2324PubMedCrossRefGoogle Scholar
  55. 55.
    Sturmey RG et al (2009) Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 44(Suppl 3):50–58PubMedCrossRefGoogle Scholar
  56. 56.
    Haggarty P et al (2006) Fatty acid metabolism in human preimplantation embryos. Hum Reprod 21(3):766–773PubMedCrossRefGoogle Scholar
  57. 57.
    Abe H et al (2002) Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol Reprod Dev 61(1): 57–66PubMedCrossRefGoogle Scholar
  58. 58.
    Reis A et al (2003) Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reprod Fertil Dev 15(5):275–284PubMedCrossRefGoogle Scholar
  59. 59.
    Ferguson EM, Leese HJ (1999) Triglyceride content of bovine oocytes and early embryos. J Reprod Fertil 116(2):373–378PubMedCrossRefGoogle Scholar
  60. 60.
    Kim JY et al (2001) Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction 122(1):131–138PubMedCrossRefGoogle Scholar
  61. 61.
    Sturmey RG, Leese HJ (2003) Energy metabolism in pig oocytes and early embryos. Reproduction 126(2):197–204PubMedCrossRefGoogle Scholar
  62. 62.
    Matorras R et al (1998) Fatty acid composition of fertilization-failed human oocytes. Hum Reprod 13(8):2227–2230PubMedCrossRefGoogle Scholar
  63. 63.
    Chen RF (1967) Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem 242(2):173–181PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Obstetrics and Gynaecology, School of Pediatrics and Reproductive HealthUniversity of AdelaideAdelaideAustralia

Personalised recommendations