Bioinformatics and Drug Discovery pp 71-86

Part of the Methods in Molecular Biology book series (MIMB, volume 910)

High-Throughput Sequencing of the Methylome Using Two-Base Encoding

Protocol

Abstract

Methylation of Cytosine together with other epigenetic traits plays an important role in the development and regulation of both healthy and diseased cells. Changes in the methylation patterns have been shown to be associated with the development of cancer, growth, neurodevelopmental, and endocrine disorders (Laird PW, Nat Rev Genet 11:191–203, 2010; Tost J, Mol Biotechnol 44:71–81, 2010; Zuo T et al., Epigenomics 1:331–345, 2009). Thus, studying the methylation pattern can give important insights to the underlying causes of disease and development. A method for studying the methylome on a single base resolution is described, using bisulfite sequencing in combination with the high-throughput SOLiDTM sequencing technology.

Key words

Next generation sequencing Bisulfite sequencing Methylation SOLiDTM sequencing Methylome Epigenome Global methylation profiling 

References

  1. 1.
    Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203PubMedCrossRefGoogle Scholar
  2. 2.
    Tost J (2010) DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol 44:71–81PubMedCrossRefGoogle Scholar
  3. 3.
    Zuo T, Tycko B, Liu T-M et al (2009) Methods in DNA methylation profiling. Epigenomics 1:331–345PubMedCrossRefGoogle Scholar
  4. 4.
    Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476PubMedCrossRefGoogle Scholar
  5. 5.
    Illingworth RS, Bird AP (2009) CpG islands—‘a rough guide’. FEBS Lett 583:1713–1720PubMedCrossRefGoogle Scholar
  6. 6.
    Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093PubMedCrossRefGoogle Scholar
  7. 7.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692PubMedCrossRefGoogle Scholar
  8. 8.
    Laird PW (2005) Cancer epigenetics. Hum Mol Genet 14:R65–R76PubMedCrossRefGoogle Scholar
  9. 9.
    Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413PubMedCrossRefGoogle Scholar
  10. 10.
    Edwards JR, O’Donnell AH, Rollins RA et al (2010) Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res 20: 972–980PubMedCrossRefGoogle Scholar
  11. 11.
    Bormann Chung CA, Boyd VL, McKernan KJ et al (2010) Whole methylome analysis by ultra-deep sequencing using two-base encoding. PLoS One. doi:10.1371/journal.pone.0009320Google Scholar
  12. 12.
    Laurent L, Wong E, Li G et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20:320–331PubMedCrossRefGoogle Scholar
  13. 13.
    Li N, Ye M, Li Y et al (2010) Whole genome DNA methylation analysis based on high ­throughput sequencing technology. Methods 52(3): 203–212. doi:10.1016/j.ymeth.2010.04.009PubMedCrossRefGoogle Scholar
  14. 14.
    Xiang H, Zhu J, Chen Q et al (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol 28:516–520PubMedCrossRefGoogle Scholar
  15. 15.
    Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedCrossRefGoogle Scholar
  16. 16.
    Lister R, Pelizzola M, Dowen RH et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322PubMedCrossRefGoogle Scholar
  17. 17.
    Zemach A, McDaniel IE, Silva P et al (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919PubMedCrossRefGoogle Scholar
  18. 18.
    Hsieh T-F, Ibarra CA, Silva P et al (2009) Genome-wide demethylation of arabidopsis endosperm. Science 324:1451–1454PubMedCrossRefGoogle Scholar
  19. 19.
    Homer N, Merriman B, Nelson S (2009) Local alignment of two-base encoded DNA sequence. BMC Bioinformatics 10:175PubMedCrossRefGoogle Scholar
  20. 20.
    Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedCrossRefGoogle Scholar
  21. 21.
    Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145PubMedCrossRefGoogle Scholar
  22. 22.
    McKernan KJ, Peckham HE, Costa GL et al (2009) Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res 19:1527–1541PubMedCrossRefGoogle Scholar
  23. 23.
    Ranade SS, Chung CB, Zon G et al (2009) Preparation of genome-wide DNA fragment libraries using bisulfite in polyacrylamide gel electrophoresis slices with formamide denaturation and quality control for massively parallel sequencing by oligonucleotide ligation and detection. Anal Biochem 390:126–135PubMedCrossRefGoogle Scholar
  24. 24.
    Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCrossRefGoogle Scholar
  25. 25.
    Marnellos G, Krissinger D, Meredith G D et al. (2010) Genome-wide methylation data analysis on the SOLiDTM System. 60th Annual Meeting of The American Society of Human Genetics, Washington, DC, 5 November 2010, abstract #1337Google Scholar
  26. 26.
    Meredith GD, Dudas M, Levandowsky E et al. (2010) Efficient whole-genome DNA methylation analysis of the Human Reference Genome (HuRef). 60th Annual Meeting of The American Society of Human Genetics, Washington, DC, 5 November 2010, abstract #1385Google Scholar
  27. 27.
    Meredith GD, Marnellos G, D’Ippolito A et al. (2010) Efficient whole-genome DNA methylation analysis of the human fibroblast cell-line IMR-90 and the plant A. thaliana. Epigenetics Europe Conference, Select Biosciences, Dublin, Ireland, 14–15 September 2010, abstract # 323Google Scholar
  28. 28.
    Ondov BD, Cochran C, Landers M et al (2010) An alignment algorithm for bisulfite sequencing using the Applied Biosystems SOLiD System. Bioinformatics 26:1901–1902PubMedCrossRefGoogle Scholar
  29. 29.
    Chen P-Y, Cokus S, Pellegrini M (2010) BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203PubMedCrossRefGoogle Scholar
  30. 30.
    Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219PubMedCrossRefGoogle Scholar
  31. 31.
    Harris EY, Ponts N, Levchuk A et al (2010) BRAT: bisulfite-treated reads analysis tool. Bioinformatics 26:572–573PubMedCrossRefGoogle Scholar
  32. 32.
    Smith AD, Chung W-Y, Hodges E et al (2009) Updates to the RMAP short-read mapping software. Bioinformatics 25:2841–2842PubMedCrossRefGoogle Scholar
  33. 33.
    Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Life TechnologiesFoster CityUSA

Personalised recommendations