Quantitative Analysis of Liver Golgi Proteome in the Cell Cycle

  • Xuequn Chen
  • Philip C. Andrews
  • Yanzhuang WangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 909)


During mitosis, the Golgi membranes in mammalian cells undergo a continuous disassembly process and generate mitotic fragments that are distributed into the daughter cells and reassembled into new Golgi after mitosis. This disassembly and reassembly process is critical for Golgi biogenesis during cell division, but the underlying molecular mechanism is poorly understood. In this study, we have recapitulated this process using an in vitro assay and analyzed the proteins that are associated with interphase and mitotic Golgi membranes using quantitative proteomics that combines the isobaric tags for relative and absolute quantification approach with OFFGEL isoelectric focusing separation and LC-MALDI-MS/MS. A total of 1,193 Golgi-associated proteins were identified and quantified. These included broad functional categories: Golgi structural proteins, Golgi resident enzymes, SNAREs, Rab GTPases, and secretory and cytoskeletal proteins. More importantly, the combination of the quantitative proteomic approach with Western blot analysis allowed us to unveil 86 proteins with significant changes in abundance under the mitotic condition compared to the interphase condition. Altogether, this systematic quantitative proteomic study revealed candidate proteins of the molecular machinery that controls the Golgi disassembly and reassembly processes in the cell cycle.

Key words

Liver Golgi Cell cycle Cell-free assay Quantitative proteomics iTRAQ LC-MALDI-MS/MS 



We gratefully acknowledge Drs. F. Gorelick, K. Gull, T. Kreis, M. Lowe, K. Moremen, A. Price, A. Satoh, J. Seemann, D. Sheff, D. Shields, and G. Warren for generously providing antibodies. We thank J. Williams and D. Tang for suggestions and reagents. We thank Sarah Volk for her assistance in OFFGEL electrophoresis. This work was supported by National Institute of Health grant P41 RR018627 to P. Andrews, and was partially supported by the National Institutes of Health (GM087364) and the American Cancer Society (RGS-09-278-01-CSM) to Y.W.


  1. 1.
    Mowbrey K, Dacks JB (2009) Evolution and diversity of the Golgi body. FEBS Lett 583(23):3738–3745PubMedCrossRefGoogle Scholar
  2. 2.
    Wang Y (2008) Golgi apparatus inheritance. In: Mironov A, Pavelka M, Luini A (eds) The Golgi apparatus State of the art 110 years after Camillo Golgi’s discovery. Springer, New York, pp 580–607Google Scholar
  3. 3.
    Shorter J, Warren G (2002) Golgi architecture and inheritance. Annu Rev Cell Dev Biol 18:379–420PubMedCrossRefGoogle Scholar
  4. 4.
    Cluett EB, Brown WJ (1992) Adhesion of Golgi cisternae by proteinaceous interactions: intercisternal bridges as putative adhesive structures. J Cell Sci 103:773–784PubMedGoogle Scholar
  5. 5.
    Slusarewicz P, Nilsson T, Hui N, Watson R, Warren G (1994) Isolation of a matrix that binds medial Golgi enzymes. J Cell Biol 124(4):405–413PubMedCrossRefGoogle Scholar
  6. 6.
    Barr FA, Short B (2003) Golgins in the structure and dynamics of the Golgi apparatus. Curr Opin Cell Biol 15(4):405–413PubMedCrossRefGoogle Scholar
  7. 7.
    Ramirez IB, Lowe M (2009) Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 20(7):770–779PubMedCrossRefGoogle Scholar
  8. 8.
    Lupashin V, Sztul E (2005) Golgi tethering factors. Biochim Biophys Acta 1744(3):325–339PubMedCrossRefGoogle Scholar
  9. 9.
    Short B, Haas A, Barr FA (2005) Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim Biophys Acta 1744(3):383–395PubMedCrossRefGoogle Scholar
  10. 10.
    Bell AW, Ward MA, Blackstock WP, Freeman HN, Choudhary JS, Lewis AP, Chotai D, Fazel A, Gushue JN, Paiement J, Palcy S, Chevet E, Lafreniere-Roula M, Solari R, Thomas DY et al (2001) Proteomics characterization of abundant Golgi membrane proteins. J Biol Chem 276(7):5152–5165PubMedCrossRefGoogle Scholar
  11. 11.
    Wu CC, MacCoss MJ, Mardones G, Finnigan C, Mogelsvang S, Yates JR 3rd, Howell KE (2004) Organellar proteomics reveals Golgi arginine dimethylation. Mol Biol Cell 15(6):2907–2919PubMedCrossRefGoogle Scholar
  12. 12.
    Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963–975PubMedGoogle Scholar
  13. 13.
    Wu CC, Yates JR 3rd, Neville MC, Howell KE (2000) Proteomic analysis of two functional states of the Golgi complex in mammary epithelial cells. Traffic 1(10):769–782PubMedCrossRefGoogle Scholar
  14. 14.
    Taylor RS, Wu CC, Hays LG, Eng JK, Yates JR 3rd, Howell KE (2000) Proteomics of rat liver Golgi complex: minor proteins are identified through sequential fractionation. Electrophoresis 21(16):3441–3459PubMedCrossRefGoogle Scholar
  15. 15.
    Mogelsvang S, Howell KE (2006) Global approaches to study Golgi function. Curr Opin Cell Biol 18(4):438–443PubMedCrossRefGoogle Scholar
  16. 16.
    Misteli T, Warren G (1994) COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system. J Cell Biol 125(2):269–282PubMedCrossRefGoogle Scholar
  17. 17.
    Rabouille C, Kondo H, Newman R, Hui N, Freemont P, Warren G (1998) Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92(5):603–610PubMedCrossRefGoogle Scholar
  18. 18.
    Rabouille C, Misteli T, Watson R, Warren G (1995) Reassembly of Golgi stacks from mitotic Golgi fragments in a cell-free system. J Cell Biol 129(3):605–618PubMedCrossRefGoogle Scholar
  19. 19.
    Tang D, Mar K, Warren G, Wang Y (2008) Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J Biol Chem 283(10):6085–6094PubMedCrossRefGoogle Scholar
  20. 20.
    Tang D, Xiang Y, Wang Y (2010) Reconstitution of the cell cycle regulated Golgi disassembly and reassembly in a cell free system. Nat Protoc 5(4):758–772PubMedCrossRefGoogle Scholar
  21. 21.
    Chen X, Simon ES, Xiang Y, Kachman M, Andrews PC, Wang Y (2010) Quantitative proteomics analysis of cell cycle regulated Golgi disassembly and reassembly. J Biol Chem 285(10):7197–7207PubMedCrossRefGoogle Scholar
  22. 22.
    Wang Y, Taguchi T, Warren G (2006) Purification of rat liver golgi stacks. In: Celis J (ed) Cell biology: a laboratory handbook, 3rd edn. Elsevier Science, San Diego, pp 33–39Google Scholar
  23. 23.
    Wang Y, Seemann J, Pypaert M, Shorter J, Warren G (2003) A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J 22(13):3279–3290PubMedCrossRefGoogle Scholar
  24. 24.
    Xiang Y, Wang Y (2010) GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 188(2):237–251PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Y, Satoh A, Warren G (2005) Mapping the functional domains of the Golgi stacking factor GRASP65. J Biol Chem 280(6):4921–4928PubMedCrossRefGoogle Scholar
  26. 26.
    Xiang Y, Seemann J, Bisel B, Punthambaker S, Wang Y (2007) Active ADP-ribosylation factor-1 (ARF1) is required for mitotic Golgi fragmentation. J Biol Chem 282(30):21829–21837PubMedCrossRefGoogle Scholar
  27. 27.
    Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6(9):1638–1655PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Xuequn Chen
    • 1
  • Philip C. Andrews
    • 2
  • Yanzhuang Wang
    • 3
    Email author
  1. 1.Department of PhysiologyWayne State UniversityDetroitUSA
  2. 2.Department of Biological ChemistryThe University of MichiganAnn ArborUSA
  3. 3.Department of Molecular, Cellular and Developmental BiologyThe University of MichiganAnn ArborUSA

Personalised recommendations