Advertisement

Nanoparticle Bridges for Studying Electrical Properties of Organic Molecules

  • Klaus LeiferEmail author
  • Ken Welch
  • Syed Hassan Mujtaba Jafri
  • Tobias Blom
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 906)

Abstract

The use of single molecules as building blocks for practical electronic devices and sensors has high potential for novel applications due to the versatility of electronic properties of the molecules. Nano-sized molecules offer great potential for further miniaturization of electronic devices. We describe a method where such molecules are used to bridge a nanoparticles-nanoelectrode interface and thus determine the electrical properties of such a junction. We describe in detail the fabrication of the platform, its functionalization with molecules, and the basics of the electrical measurements. This platform has been shown to guide electrical current through a few molecules. The versatility of such nanoparticle-molecule-nanoelectrode heterojunctions makes this platform suitable for both basic molecular electronics measurements and also for molecular sensing devices in biological and medical applications.

Key words

Nanoparticles Nanoparticle bridge Molecular electronics Functionalization Nanoelectrode Dielectrophoretic trapping 

References

  1. 1.
    Perkins FK, Tender LM, Fertig SJ et al (2002) Sensing macromolecules with microelectronics. Proc SPIE 4608:251–265CrossRefGoogle Scholar
  2. 2.
    Blom T, Welch K, Stromme M et al (2007) Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling. Nanotechnology 18:285301CrossRefGoogle Scholar
  3. 3.
    Fischbein MD, Drndic M (2006) Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures. Appl Phys Lett 88:063116CrossRefGoogle Scholar
  4. 4.
    Morpurgo AF, Marcus CM, Robinson DB (1999) Controlled fabrication of metallic electrodes with atomic separation. Appl Phys Lett 74:2084–2086CrossRefGoogle Scholar
  5. 5.
    Park H, Lim AKL, Alivisatos AP et al (1999) Fabrication of metallic electrodes with nanometer separation by electromigration. Appl Phys Lett 75:301–303CrossRefGoogle Scholar
  6. 6.
    Sastry M, Kumar A, Mukherjee P (2001) Phase transfer of aqueous colloidal gold particles into organic solutions containing fatty amine molecules. Colloid Surf A 181:255–259CrossRefGoogle Scholar
  7. 7.
    Zhang P, Chu AYC, Sham TK et al (2009) Chemical synthesis and structural studies of thiol-capped gold nanoparticles. Can J Chem 87:335–340CrossRefGoogle Scholar
  8. 8.
    Liao JH, Mangold MA, Grunder S et al (2008) Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules. New J Phys 10:065019CrossRefGoogle Scholar
  9. 9.
    Jafri SHM, Blom T, Leifer K et al (2010) Assessment of a nanoparticle bridge platform for molecular electronics measurements. Nanotechnology 21:435204PubMedCrossRefGoogle Scholar
  10. 10.
    Welch K, Blom T, Leifer K, Stromme M (2011) Enabling measurements of low-conductance single molecules using gold nanoelectrodes. Nanotechnology 22:125707PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Klaus Leifer
    • 1
    Email author
  • Ken Welch
    • 2
  • Syed Hassan Mujtaba Jafri
    • 1
  • Tobias Blom
    • 1
  1. 1.Department of Engineering Sciences, Division of Applied Materials ScienceUppsala UniversityUppsalaSweden
  2. 2.Department of Engineering Sciences, Division of Nanotechnology and Functional MaterialsUppsala UniversityUppsalaSweden

Personalised recommendations