Advertisement

Synthesis, Application, and Tracking of Magnetic Carbon-Coated Nanoparticles in Plants

  • Alejandro Pérez-de-LuqueEmail author
  • Zuny Cifuentes
  • Clara Marquina
  • Jesús M. de la Fuente
  • M. Ricardo Ibarra
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 906)

Abstract

The behavior of nanoparticles inside plants is gaining importance for its implications in research about putative applications and toxicology. Magnetic carbon-coated nanoparticles can be easily traced through plant tissues using simple and affordable histological techniques. Here we present a methodology for the synthesis of such nanoparticles. We also describe methods for growing plants using rhizotrons (in order to observe the roots), procedures for applying the nanoparticles, taking and processing the samples.

Key words

Magnetic nanoparticles Arc-discharge furnace Gas-phase condensation Nano­biotechnology Plant histology Rizhotron Light microscopy 

Notes

Acknowledgements

This work was supported by the projects granted by the Spanish Ministry of Science and Innovation (MICINN) NANOBIOMED (CONSOLIDER-INGENIO 2010 Programme), AGL2008-01467, EUI2008-00157, and EUI2008-00114. Financial support from the Autonomic Government of Aragon (DGA) is also acknowledged through ARAID foundation.

References

  1. 1.
    Robinson DKR, Salejova-Zadrazilova G (2010) Nanotechnologies for nutrient and biocide delivery in agricultural production. ObservatoryNANO. http://www.observatorynano.eu/project/filesystem/files/Controlled%20delivery.pdf. Accessed 18 Apr 2011
  2. 2.
    Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  3. 3.
    Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manage Sci 65:540–545CrossRefGoogle Scholar
  4. 4.
    Pérez-de-Luque A, Cifuentes Z, Beckstead J, Ryan RO (2010) Amphotericin B nanodisks (AMB-NDs) for treatment of fungal diseases in plants. In: Ribeiro C, de Assis OBG, Mattoso LHC, Mascarenhas S (eds) International Conference on Food and Agriculture Applications of Nanotechnologies (NanoAgri-2010). Embrapa, Sao PedroGoogle Scholar
  5. 5.
    FAO/WHO (2010) Expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications. Meeting report. Food and Agriculture Organization of the United Nations and World Health Organization, RomeGoogle Scholar
  6. 6.
    Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  7. 7.
    González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195PubMedCrossRefGoogle Scholar
  8. 8.
    Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de-Luque A, Risueño MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45PubMedCrossRefGoogle Scholar
  9. 9.
    Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26CrossRefGoogle Scholar
  10. 10.
    Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  11. 11.
    Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedCrossRefGoogle Scholar
  12. 12.
    Racuciu M, Creanga D (2007) Cytogenetic changes induced by aqueous ferrofluids in agricultural plants. J Magn Magn Mater 311:288–290CrossRefGoogle Scholar
  13. 13.
    Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alejandro Pérez-de-Luque
    • 1
    Email author
  • Zuny Cifuentes
    • 2
  • Clara Marquina
    • 3
    • 4
  • Jesús M. de la Fuente
    • 5
  • M. Ricardo Ibarra
    • 6
    • 5
  1. 1.Área de Mejora y BiotecnologíaIFAPA, Centro Alameda del ObispoCórdobaSpain
  2. 2.Ãrea de Mejora y Biotecnologí aIFAPA, Centro Alameda del ObispoCórdobaSpain
  3. 3.Instituto de Ciencia de Materiales de Aragón (ICMA)CSIC-Universidad de ZaragozaZaragozaSpain
  4. 4.Departamentto de Fisica de la Materia CondensadaUniversidad de ZaragozaZaragozaSpain
  5. 5.Instituto de Nanociencia de AragónUniversidad de ZaragozaZaragozaSpain
  6. 6.Departamento de Física de la Materia CondensadaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations