Skip to main content

Procedures for the Synthesis and Capping of Metal Nanoparticles

Part of the Methods in Molecular Biology book series (MIMB,volume 906)

Abstract

The increasing impact of metallic nanoparticles in life sciences has stimulated the development of new techniques and multiple improvements of the existing methods of manufacturing nanoparticles with tailored properties. Nanoparticles can be synthesized through a variety of physical and chemical methods. The choice of preparation procedure will depend on the physical and chemical characteristics required on the final product, such as size, dispersion, chemical miscibility, optical properties, among others. Here we review basic practical procedures used for the preparation of protected and unprotected metallic nanoparticles and describe a number of experimental procedures based on colloidal chemistry methods. These include gold nanoparticle synthesis by reduction with trisodium citrate, ascorbic acid, or sugars in aqueous phase; nanoparticle passivation with alkanethiols, cetyltrimethylammonium bromide, or bovin serum albumin. We also describe microwave-assisted synthesis, nanoparticle synthesis in ethylene glycol, template-assisted synthesis with dendrimers and briefly describe how to control nanoparticle shape (star-shaped and branched nanoparticles).

Key words

  • Nanoparticles
  • Nanostructures synthesis
  • Passivated particles
  • Nanomaterials
  • Nanotechnology
  • Colloidal particles

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-61779-953-2_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-61779-953-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Siegel RW (1990) Nanophase materials assembled from atomic clusters. MRS Bull 15:60–7

    CAS  Google Scholar 

  2. Phillips J, Chou CH (1992) Plasma production of metallic nanoparticles. J Mat Res 7:2107–13

    CrossRef  Google Scholar 

  3. Porter DA, Easterling KE (1992) Phase Transformations in Metals and Alloys. CRC Press

    Google Scholar 

  4. Cao G (2004) Nanostructures and nanomaterials. Synthesis, properties and applications. Imperial College Press, London

    CrossRef  Google Scholar 

  5. Elechiguerra JL, Reyes-Gasga J, Jose-Yacaman M (2006) The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mat Chem 16:3906–19

    CrossRef  CAS  Google Scholar 

  6. Turkevich J, Stevenson PC, Hillier J (1953) The Formation of Colloidal Gold. J Phys Chem 57:670–673

    Google Scholar 

  7. Kimling J, Mainer M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–7

    PubMed  CrossRef  CAS  Google Scholar 

  8. Frens G (1973) Controlled nucleation for ­regulation of particle-size in monodisperse gold suspension. Nat Phys Sci 241:20–2

    CAS  Google Scholar 

  9. Cademartiri L, Ozrin GA (2009) Concepts of nanochemistry. Wiley-VCH, Germany

    Google Scholar 

  10. Nadagouda MN, Varma RS (2007) A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des 7:2582–7

    CrossRef  CAS  Google Scholar 

  11. Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6:411–4

    CrossRef  CAS  Google Scholar 

  12. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7(7):801–2

    CrossRef  Google Scholar 

  13. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1962–75

    CrossRef  Google Scholar 

  14. Burt JL, Gutierrez-Wing C, Miki-Yoshida M, Jose-Yacaman M (2004) Noble-metal nanoparticles directly conjugated to globular ­proteins. Langmuir 20:11778–83

    PubMed  CrossRef  CAS  Google Scholar 

  15. Vargas Hernandez C, Mariscal MM, Esparza R, Jose-Yacaman M (2010) A synthesis route of gold nanoparticles without using a reducing agent. Appl Phys Lett 96:213115–1

    CrossRef  Google Scholar 

  16. Kim F, Connor S, Song H, Kuykendall T, Yang P (2004) Platonic gold nanocrystals. Angew Chem Int Ed Engl 43:3673–7

    PubMed  CrossRef  CAS  Google Scholar 

  17. Zhao M, Crooks RM (1999) Dendrimer-encapsulated pt nanoparticles: Synthesis, characterization, and applications to catalysis. Adv Mater 11:217–20

    CrossRef  CAS  Google Scholar 

  18. Garcia ME, Baker LA, Crooks RM (1999) Preparation and characterization of dendrimer-gold colloid nanocomposites. Anal Chem 71:256–8

    PubMed  CrossRef  CAS  Google Scholar 

  19. Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14:517–26

    CrossRef  CAS  Google Scholar 

  20. Wang H, Goodrich GP, Tam F, Oubre C, Nordlander P, Halas NJ (2005) Controlled texturing modifies the surface topography and plasmonic properties of au nanoshells. J Phys Chem B 109:11083–7

    PubMed  CrossRef  CAS  Google Scholar 

  21. Burt JL, Elechiguerra JL, Reyes-Gasga J, Montejano-Carrizales JM, Jose-Yacamán M (2005) Beyond archimedean solids: Star polyhedral gold nanocrystals. J Cryst Growth 285:681–91

    CrossRef  CAS  Google Scholar 

  22. Mayoral A, Vazquez-Duran A, Heinze SG, Jose-Yacamán M (2010) Synthesis and characterization of branched gold nanoparticles. Mater Sci Forum 644:57–60

    CrossRef  CAS  Google Scholar 

  23. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–7

    CrossRef  CAS  Google Scholar 

  24. Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–7

    PubMed  CrossRef  CAS  Google Scholar 

  25. Wei Q, Song HM, Leonov AP, Hale JA, Dongmyung Oh, Ong QK et al (2009) Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores. J Am Chem Soc 131:9728–34

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel José-Yacamán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gutiérrez-Wing, C., Velázquez-Salazar, J.J., José-Yacamán, M. (2012). Procedures for the Synthesis and Capping of Metal Nanoparticles. In: Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 906. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-953-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-953-2_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-952-5

  • Online ISBN: 978-1-61779-953-2

  • eBook Packages: Springer Protocols