Nanoparticles in Biology and Medicine pp 239-252

Part of the Methods in Molecular Biology book series (MIMB, volume 906)

Labeling Stem Cells with Superparamagnetic Iron Oxide Nanoparticles: Analysis of the Labeling Efficacy by Microscopy and Magnetic Resonance Imaging

  • Jasmin
  • Ana Luiza Machado Torres
  • Linda Jelicks
  • Antonio Carlos Campos de Carvalho
  • David C. Spray
  • Rosalia Mendez-Otero


Stem cell therapy has emerged as a potential therapeutic option for cell death-related heart diseases. Application of non-invasive cell tracking approaches is necessary to determine tissue distribution and lifetime of stem cells following their injection and will likely provide knowledge about poorly understood stem cells mechanisms of tissue repair. Magnetic resonance imaging (MRI) is a potentially excellent tool for high-resolution visualization of the fate of cells after transplantation and for evaluation of therapeutic strategies. The application of MRI for in vivo cell tracking requires contrast agents to achieve efficient cell labeling without causing any toxic cellular effects or eliciting any other side effects. For these reasons clinically approved contrast agents (e.g., ferumoxides) and incorporation facilitators (e.g., protamine) are currently the preferred materials for cell labeling and tracking. Here we describe how to use superparamagnetic iron oxide nanoparticles to label cells and to monitor cell fate in several disease models.

Key words

Stem cells Cell labeling Ferumoxides Superparamagnetic iron oxide nanoparticles Magnetic resonance imaging 


  1. 1.
    Guzman R et al (2007) Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A 104:10211–10216PubMedCrossRefGoogle Scholar
  2. 2.
    Sykova E, Jendelova P (2007) Migration, fate and in vivo imaging of adult stem cells in the CNS. Cell Death Differ 14:1336–1342PubMedCrossRefGoogle Scholar
  3. 3.
    Hoehn M et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci U S A 99:16267–16272PubMedCrossRefGoogle Scholar
  4. 4.
    Dodd SJ et al (1999) Detection of single ­mammalian cells by high-resolution magnetic resonance imaging. Biophys J 76:103–109PubMedCrossRefGoogle Scholar
  5. 5.
    Jendelova P et al (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243PubMedCrossRefGoogle Scholar
  6. 6.
    Shapiro EM et al (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A 101:10901–10906PubMedCrossRefGoogle Scholar
  7. 7.
    Farrell E et al (2008) Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochem Biophys Res Commun 369:1076–1081PubMedCrossRefGoogle Scholar
  8. 8.
    Modo M et al (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17:803–811PubMedCrossRefGoogle Scholar
  9. 9.
    Lewin M et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRefGoogle Scholar
  10. 10.
    Dodd CH et al (2001) Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods 256:89–105PubMedCrossRefGoogle Scholar
  11. 11.
    Ahrens ET et al (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49:1006–1013PubMedCrossRefGoogle Scholar
  12. 12.
    Frank JA et al (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487PubMedCrossRefGoogle Scholar
  13. 13.
    Weissleder R et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–173PubMedGoogle Scholar
  14. 14.
    Molday RS, MacKenzie D (1982) Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 52:353–367PubMedCrossRefGoogle Scholar
  15. 15.
    Kim HS et al (2010) The effects of clinically used MRI contrast agents on the biological properties of human mesenchymal stem cells. NMR Biomed 23:514–522PubMedCrossRefGoogle Scholar
  16. 16.
    Modo M et al (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21:311–317PubMedCrossRefGoogle Scholar
  17. 17.
    Brekke C et al (2007) The in vitro effects of a bimodal contrast agent on cellular functions and relaxometry. NMR Biomed 20:77–89PubMedCrossRefGoogle Scholar
  18. 18.
    Greisberg JK et al (2001) Gadolinium inhibits thymidine incorporation and induces apoptosis in chondrocytes. J Orthop Res 19:797PubMedCrossRefGoogle Scholar
  19. 19.
    Babic M et al (2008) Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 19:740–750PubMedCrossRefGoogle Scholar
  20. 20.
    Arbab AS et al (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76:1123–1130PubMedCrossRefGoogle Scholar
  21. 21.
    Jasmin et al (2011) Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging. J Nanobiotechnology 9:4PubMedCrossRefGoogle Scholar
  22. 22.
    Arbab AS et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRefGoogle Scholar
  23. 23.
    Janic B et al (2009) Optimization and ­validation of FePro cell labeling method. PLoS One 4:e5873PubMedCrossRefGoogle Scholar
  24. 24.
    van Buul GM et al (2009) Ferumoxides-protamine sulfate is more effective than ferucarbotran for cell labeling: implications for clinically applicable cell tracking using MRI. Contrast Media Mol Imaging 4:230–236PubMedCrossRefGoogle Scholar
  25. 25.
    Qiu B, Yang X (2008) Molecular MRI of hematopoietic stem-progenitor cells: in vivo monitoring of gene therapy and atherosclerosis. Nat Clin Pract Cardiovasc Med 5:396–404PubMedCrossRefGoogle Scholar
  26. 26.
    Walczak P et al (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54:769–774PubMedCrossRefGoogle Scholar
  27. 27.
    Tai JH et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55:2931–2938PubMedCrossRefGoogle Scholar
  28. 28.
    Qiu B et al (2010) Magnetosonoporation: instant magnetic labeling of stem cells. Magn Reson Med 63:1437–1441PubMedCrossRefGoogle Scholar
  29. 29.
    Arbab AS et al (2005) Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18:553–559PubMedCrossRefGoogle Scholar
  30. 30.
    Kostura L et al (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517PubMedCrossRefGoogle Scholar
  31. 31.
    Bull BS et al (1975) Heparin therapy during extracorporeal circulation. II. The use of a dose-response curve to individualize heparin and protamine dosage. J Thorac Cardiovasc Surg 69:685–689PubMedGoogle Scholar
  32. 32.
    Gervin AS (1975) Complications of heparin therapy. Surg Gynecol Obstet 140:789–796PubMedGoogle Scholar
  33. 33.
    Bourrinet P et al (2006) Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 41:313–324PubMedCrossRefGoogle Scholar
  34. 34.
    Liu W, Frank JA (2009) Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 70:258–264PubMedCrossRefGoogle Scholar
  35. 35.
    Smirnov P et al (2006) Single-cell detection by gradient echo 9.4 T MRI: a parametric study. Contrast Media Mol Imaging 1:165–174PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jasmin
    • 1
    • 2
  • Ana Luiza Machado Torres
    • 1
  • Linda Jelicks
    • 3
  • Antonio Carlos Campos de Carvalho
    • 1
    • 2
  • David C. Spray
    • 2
  • Rosalia Mendez-Otero
    • 1
  1. 1.Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of NeuroscienceAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of Physiology and BiophysicsAlbert Einstein College of MedicineBronxUSA

Personalised recommendations