Evaluating the Potential of Quantum Dots for In Vitro Biological Studies: Effects on Gene Expression Using Microarray Analysis

  • Babu R. Prasad
  • Enda O’Connell
  • Terry J. Smith
  • Valérie A. Gérard
  • Yurii K. Gun’ko
  • Yury RochevEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 906)


Quantum dots have potential applications in the biomedical field and especially in bioimaging owing to their tunable fluorescent properties. Although many phenotypic studies have been carried out using QDs on different cell lines, only very few of them involved the analysis of the effect of QDs on gene expression. Here, we describe the application of microarray gene expression analysis for studying the differential expression of genes in the cells treated with QDs.

Key words

HPMEC cells Quantum dots RNA microarray Gene expression 



This work was funded by the Science Foundation Ireland (SFI) and National University of Ireland Galway Millennium Fund 2008. HPMEC-ST1.6R cells were kindly provided by Ronald E. Unger, Institute of Pathology, Johannes Gutenberg University, Mainz, Germany.


  1. 1.
    Drummen GP (2010) Quantum dots-from synthesis to applications in biomedicine and life sciences. Int J Mol Sci 11:154–163PubMedCrossRefGoogle Scholar
  2. 2.
    Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46PubMedCrossRefGoogle Scholar
  3. 3.
    Kondoh M, Araragi S, Sato K, Higashimoto M, Takiguchi M, Sato M (2002) Cadmium induces apoptosis partly via caspase-9 activation in HL-60 cells. Toxicology 170:111–117PubMedCrossRefGoogle Scholar
  4. 4.
    Rikans LE, Yamano T (2000) Mechanisms of cadmium-mediated acute hepatotoxicity. J Biochem Mol Toxicol 14:110–117PubMedCrossRefGoogle Scholar
  5. 5.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefGoogle Scholar
  6. 6.
    Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169CrossRefGoogle Scholar
  7. 7.
    Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  8. 8.
    Guo G, Liu W, Liang J, He Z, Xu H, Yang X (2007) Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett 61:1641–1644CrossRefGoogle Scholar
  9. 9.
    Lovrić J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234PubMedCrossRefGoogle Scholar
  10. 10.
    Kirchner C, Liedl T, Kudera S, Pellegrino T, MunozJavier A, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338PubMedCrossRefGoogle Scholar
  11. 11.
    Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412–1417PubMedCrossRefGoogle Scholar
  12. 12.
    Wang L, Nagesha D, Selvarasah S, Dokmeci M, Carrier R (2008) Toxicity of CdSe ­nanoparticles in Caco-2 cell cultures. J Nano­biotechnology 6:11PubMedCrossRefGoogle Scholar
  13. 13.
    Byrne SJ, Williams Y, Davies A, Corr SA, Rakovich A, Gun’ko YK, Rakovich YP, Donegan JF, Volkov Y (2007) “Jelly dots”: synthesis and cytotoxicity studies of CdTe quantum dot-gelatine nanocomposites. Small 3:1152–1156PubMedCrossRefGoogle Scholar
  14. 14.
    Prasad BR, Nikolskaya N, Connolly D, Smith TJ, Byrne SJ, Gerard VA, Gun’ko YK, Rochev Y (2010) Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use. J Nanobiotechnology 8:7PubMedCrossRefGoogle Scholar
  15. 15.
    Krump-Konvalinkova V, Bittinger F, Unger RE, Peters K, Lehr HA, Kirkpatrick CJ (2001) Generation of human pulmonary microvascular endothelial cell lines. Lab Invest 81:1717–1727PubMedCrossRefGoogle Scholar
  16. 16.
    Byrne SJ, Corr SA, Rakovich TY, Gun’ko YK, Rakovich YP, Donegan JF, Mitchell S, Volkov Y (2006) Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging. J Mater Chem 16:2896–2902CrossRefGoogle Scholar
  17. 17.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  18. 18.
    Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13CrossRefGoogle Scholar
  19. 19.
    Barton G, Abbott J, Chiba N, Huang DW, Huang Y, Krznaric M, Mack-Smith J, Saleem A, Sherman BT, Tiwari B et al (2008) EMAAS: an extensible grid-based rich Internet application for microarray data analysis and management. BMC Bioinformatics 9:493PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Babu R. Prasad
    • 1
  • Enda O’Connell
    • 1
  • Terry J. Smith
    • 1
  • Valérie A. Gérard
    • 2
  • Yurii K. Gun’ko
    • 2
  • Yury Rochev
    • 1
    Email author
  1. 1.National Centre for Biomedical Engineering ScienceNational University of IrelandGalwayIreland
  2. 2.CRANN and the School of ChemistryTrinity College DublinDublinIreland

Personalised recommendations