Procedures for the Synthesis and Capping of Metal Nanoparticles

  • Claudia Gutiérrez-Wing
  • J. Jesús Velázquez-Salazar
  • Miguel José-Yacamán
Part of the Methods in Molecular Biology book series (MIMB, volume 906)


The increasing impact of metallic nanoparticles in life sciences has stimulated the development of new techniques and multiple improvements of the existing methods of manufacturing nanoparticles with tailored properties. Nanoparticles can be synthesized through a variety of physical and chemical methods. The choice of preparation procedure will depend on the physical and chemical characteristics required on the final product, such as size, dispersion, chemical miscibility, optical properties, among others. Here we review basic practical procedures used for the preparation of protected and unprotected metallic nanoparticles and describe a number of experimental procedures based on colloidal chemistry methods. These include gold nanoparticle synthesis by reduction with trisodium citrate, ascorbic acid, or sugars in aqueous phase; nanoparticle passivation with alkanethiols, cetyltrimethylammonium bromide, or bovin serum albumin. We also describe microwave-assisted synthesis, nanoparticle synthesis in ethylene glycol, template-assisted synthesis with dendrimers and briefly describe how to control nanoparticle shape (star-shaped and branched nanoparticles).

Key words

Nanoparticles Nanostructures synthesis Passivated particles Nanomaterials Nanotechnology Colloidal particles 


  1. 1.
    Siegel RW (1990) Nanophase materials assembled from atomic clusters. MRS Bull 15:60–7Google Scholar
  2. 2.
    Phillips J, Chou CH (1992) Plasma production of metallic nanoparticles. J Mat Res 7:2107–13CrossRefGoogle Scholar
  3. 3.
    Porter DA, Easterling KE (1992) Phase Transformations in Metals and Alloys. CRC PressGoogle Scholar
  4. 4.
    Cao G (2004) Nanostructures and nanomaterials. Synthesis, properties and applications. Imperial College Press, LondonCrossRefGoogle Scholar
  5. 5.
    Elechiguerra JL, Reyes-Gasga J, Jose-Yacaman M (2006) The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mat Chem 16:3906–19CrossRefGoogle Scholar
  6. 6.
    Turkevich J, Stevenson PC, Hillier J (1953) The Formation of Colloidal Gold. J Phys Chem 57:670–673Google Scholar
  7. 7.
    Kimling J, Mainer M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–7PubMedCrossRefGoogle Scholar
  8. 8.
    Frens G (1973) Controlled nucleation for ­regulation of particle-size in monodisperse gold suspension. Nat Phys Sci 241:20–2Google Scholar
  9. 9.
    Cademartiri L, Ozrin GA (2009) Concepts of nanochemistry. Wiley-VCH, GermanyGoogle Scholar
  10. 10.
    Nadagouda MN, Varma RS (2007) A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des 7:2582–7CrossRefGoogle Scholar
  11. 11.
    Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6:411–4CrossRefGoogle Scholar
  12. 12.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7(7):801–2CrossRefGoogle Scholar
  13. 13.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1962–75CrossRefGoogle Scholar
  14. 14.
    Burt JL, Gutierrez-Wing C, Miki-Yoshida M, Jose-Yacaman M (2004) Noble-metal nanoparticles directly conjugated to globular ­proteins. Langmuir 20:11778–83PubMedCrossRefGoogle Scholar
  15. 15.
    Vargas Hernandez C, Mariscal MM, Esparza R, Jose-Yacaman M (2010) A synthesis route of gold nanoparticles without using a reducing agent. Appl Phys Lett 96:213115–1CrossRefGoogle Scholar
  16. 16.
    Kim F, Connor S, Song H, Kuykendall T, Yang P (2004) Platonic gold nanocrystals. Angew Chem Int Ed Engl 43:3673–7PubMedCrossRefGoogle Scholar
  17. 17.
    Zhao M, Crooks RM (1999) Dendrimer-encapsulated pt nanoparticles: Synthesis, characterization, and applications to catalysis. Adv Mater 11:217–20CrossRefGoogle Scholar
  18. 18.
    Garcia ME, Baker LA, Crooks RM (1999) Preparation and characterization of dendrimer-gold colloid nanocomposites. Anal Chem 71:256–8PubMedCrossRefGoogle Scholar
  19. 19.
    Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14:517–26CrossRefGoogle Scholar
  20. 20.
    Wang H, Goodrich GP, Tam F, Oubre C, Nordlander P, Halas NJ (2005) Controlled texturing modifies the surface topography and plasmonic properties of au nanoshells. J Phys Chem B 109:11083–7PubMedCrossRefGoogle Scholar
  21. 21.
    Burt JL, Elechiguerra JL, Reyes-Gasga J, Montejano-Carrizales JM, Jose-Yacamán M (2005) Beyond archimedean solids: Star polyhedral gold nanocrystals. J Cryst Growth 285:681–91CrossRefGoogle Scholar
  22. 22.
    Mayoral A, Vazquez-Duran A, Heinze SG, Jose-Yacamán M (2010) Synthesis and characterization of branched gold nanoparticles. Mater Sci Forum 644:57–60CrossRefGoogle Scholar
  23. 23.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–7CrossRefGoogle Scholar
  24. 24.
    Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–7PubMedCrossRefGoogle Scholar
  25. 25.
    Wei Q, Song HM, Leonov AP, Hale JA, Dongmyung Oh, Ong QK et al (2009) Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores. J Am Chem Soc 131:9728–34PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Claudia Gutiérrez-Wing
    • 1
  • J. Jesús Velázquez-Salazar
    • 2
  • Miguel José-Yacamán
    • 2
  1. 1.Ciencias Aplicadas-Tecnología de MaterialesInstituto Nacional de Investigaciones NuclearesLa Marquesa OcoyoacacMexico
  2. 2.Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations