Bioinformatic Discovery of Bacterial Regulatory RNAs Using SIPHT

Part of the Methods in Molecular Biology book series (MIMB, volume 905)


Diverse bacteria encode RNAs that are not translated into proteins but are instead involved in regulating a wide variety of cellular functions. Computational approaches have proven successful in identifying numerous regulatory RNAs in myriad bacterial species but the difficultly of implementing most of these approaches has limited their accessibility to many researchers. Moreover, few of these approaches provide annotations of predicted loci to guide downstream experimental validation and characterization. Here I describe the implementation of SIPHT, a web-accessible program that enables screens for putative loci encoding regulatory RNAs to be conducted in any of nearly 2,000 sequenced bacterial replicons. SIPHT identifies candidate loci by searching for regions of intergenic sequence conservation upstream of predicted intrinsic transcription terminators. Each locus is then annotated for numerous features that provide clues about its potential function and/or enable the most reliable candidates to be identified.

Key words

regRNA sRNA SIPHT Bioinformatics Annotation 


  1. 1.
    Altuvia S (2007) Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol 10:257–261PubMedCrossRefGoogle Scholar
  2. 2.
    Sorek R, Cossart P (2010) Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 11:9–16PubMedCrossRefGoogle Scholar
  3. 3.
    Weissenmayer BA et al (2011) Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 6:e17570PubMedCrossRefGoogle Scholar
  4. 4.
    Liu JM et al (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37:e46PubMedCrossRefGoogle Scholar
  5. 5.
    Livny J, Waldor MK (2010) Mining regulatory 5′UTRs from cDNA deep sequencing datasets. Nucleic Acids Res 38:1504–1514PubMedCrossRefGoogle Scholar
  6. 6.
    Irnov I et al (2010) Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res 38:6637–6651PubMedCrossRefGoogle Scholar
  7. 7.
    Sharma CM et al (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255PubMedCrossRefGoogle Scholar
  8. 8.
    Mraheil MA et al (2011) The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 39:4235–4248PubMedCrossRefGoogle Scholar
  9. 9.
    Livny J, Waldor MK (2007) Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 10:96–101PubMedCrossRefGoogle Scholar
  10. 10.
    Lu X et al (2011) Assessing computational tools for the discovery of small RNA genes in bacteria. RNA 17:1635–1647PubMedCrossRefGoogle Scholar
  11. 11.
    Livny J et al (2008) High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS One 3:e3197PubMedCrossRefGoogle Scholar
  12. 12.
    Valverde C et al (2008) Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics 9:416PubMedCrossRefGoogle Scholar
  13. 13.
    Faucher SP et al (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci USA 107:7533–7538PubMedCrossRefGoogle Scholar
  14. 14.
    Dichiara JM et al (2010) Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Res 38:4067–4078PubMedCrossRefGoogle Scholar
  15. 15.
    Postic G et al (2010) Identification of small RNAs in Francisella tularensis. BMC Genomics 11:625PubMedCrossRefGoogle Scholar
  16. 16.
    Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  17. 17.
    Macke TJ et al (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29:4724–4735PubMedCrossRefGoogle Scholar
  18. 18.
    Kingsford CL et al (2007) Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8:R22PubMedCrossRefGoogle Scholar
  19. 19.
    Wassarman K et al (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651PubMedCrossRefGoogle Scholar
  20. 20.
    Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8:R239PubMedCrossRefGoogle Scholar
  21. 21.
    Gardner PP et al (2011) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39:D141–D145PubMedCrossRefGoogle Scholar
  22. 22.
    Hulton CS et al (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834PubMedCrossRefGoogle Scholar
  23. 23.
    Rivas E et al (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 11:1369–1373PubMedCrossRefGoogle Scholar
  24. 24.
    van Helden J (2003) Regulatory sequence analysis tools. Nucleic Acids Res 31:3593–3596PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.The Broad Institute of MIT and HarvardCambridgeUSA
  2. 2.Channing LaboratoryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations