Diagnosis of Sexually Transmitted Diseases pp 65-101

Part of the Methods in Molecular Biology book series (MIMB, volume 903)

| Cite as

Guidelines for the Use of Molecular Tests for the Detection and Genotyping of Human Papilloma Virus from Clinical Specimens

Protocol

Abstract

Accurate genotyping of a human papilloma virus (HPV) isolated from clinical specimens depends on molecular identification of the unique and exclusive nucleotide base sequence in the hypervariable region of a highly conserved segment of the HPV L1 gene. Among other options, a heminested (nested) polymerase chain reaction (PCR) technology using two consecutive PCR replications of the target DNA in tandem with three consensus general primers may be used to detect a minute quantity of HPV DNA in crude proteinase K digestate of cervicovaginal cells, and to prepare the template for genotyping by automated direct DNA sequencing. A short target sequence of 40–60 bases excised from the computer-generated electropherogram is sufficient for BLAST determination of all clinically relevant HPV genotypes, based on the database stored in the GenBank. This chapter discusses the principle and the essential technical elements in performing nested PCR DNA amplification for the detection of HPV from clinical specimens and short target sequence genotyping for HPV, using standard molecular biology laboratory equipment and commercially available reagents.

Key words

HPV DNA Nested PCR Genotyping DNA sequencing 

Abbreviations

ATCC

American Type Culture Collection

BLAST

Basic Local Alignment Search Tool

HPV

Human papilloma virus

NCBI

National Center for Biotechnology Information

PCR

Polymerase chain reaction

References

  1. 1.
    de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27PubMedCrossRefGoogle Scholar
  2. 2.
    Chan SY, Delius H, Halpern AL, Bernard HU (1995) Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. J Virol 69:3074–3083PubMedGoogle Scholar
  3. 3.
    Meyer T, Arndt R, Stockfleth E, Flammann HT, Wolf H, Reischl U (1995) Strategy for typing human papillomaviruses by RFLP analysis of PCR products and subsequent hybridization with a generic probe. Biotechniques 19:632–639PubMedGoogle Scholar
  4. 4.
    Vernon SD, Unger ER, Williams D (2000) Comparison of human papillomavirus detection and typing by cycle sequencing, line blotting, and hybrid capture. J Clin Microbiol 38:651–655PubMedGoogle Scholar
  5. 5.
    Johnson T, Bryder K, Corbet S, Fomsgaard A (2003) Routine genotyping of human papillomavirus samples in Denmark. APMIS 111:398–404PubMedCrossRefGoogle Scholar
  6. 6.
    Speich N, Schmitt C, Bollmann R, Bollmann M (2004) Human papillomavirus (HPV) study of 2916 cytological samples by PCR and DNA sequencing: genotype spectrum of patients from the west German area. J Med Microbiol 53:125–128PubMedCrossRefGoogle Scholar
  7. 7.
    Klug SJ, Molijn A, Schopp B, Holz B, Iftner A, Quint W, J F Snijders P, Petry KU, Krüger Kjaer S, Munk C, Iftner T (2008) Comparison of the performance of different HPV genotyping methods for detecting genital HPV types. J Med Virol 80:1264–1274PubMedCrossRefGoogle Scholar
  8. 8.
    Frutos AG, Pal S, Quesada M, Lahiri J (2002) Method for detection of single-base mismatches using bimolecular beacons. J Am Chem Soc 124:2396–2397PubMedCrossRefGoogle Scholar
  9. 9.
    Iqbal J, Hanel F, Ruryk A, Limmon GV, Tretiakov A, Durst M, Saluz HP (2008) Fabrication and evaluation of a sequence-specific oligonucleotide miniarray for molecular genotyping. Indian J Med Microbiol 26:13–20PubMedCrossRefGoogle Scholar
  10. 10.
    Kinney W, Stoler MH, Castle PE (2010) Special commentary: patient safety and the next generation of HPV DNA tests. Am J Clin Pathol 134:193–199PubMedCrossRefGoogle Scholar
  11. 11.
    Draft Guidance for Industry issued by the U. S. Food and Drug Administration. Establishing the performance characteristics of in vitro diagnostic devices for the detection or detection and differentiation of human papillomaviruses. FDA Docket No. FDA-2009-D-0386-0002. Posted on 09-09-2009. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM181511.pdf
  12. 12.
    National Cancer Institute. HPV genotyping. Solicitation number: NCI-100143-MM. 2 Aug 2010. https://www.fbo.gov/index?s=opportunity&mode=form&id=da396b97ad6eb7ec4f7d511f85d9e325&tab=core&_cview=0
  13. 13.
    Feoli-Fonseca JC, Oligny LL, Filion M, Brochu P, Simard P, Russo PA, Yotov WV (1998) A two-tier polymerase chain reaction direct sequencing method for detection and typing human papillomavirus in pathological specimens. Diagn Mol Pathol 7:317–323PubMedCrossRefGoogle Scholar
  14. 14.
    Asato T, Maehama T, Nagai Y, Kanazawa K, Uezato H, Kariya K (2004) A large case-control study of cervical cancer risk associated with human papillomavirus infection in Japan, by nucleotide sequencing-based genotyping. J Infect Dis 189:1829–1832PubMedCrossRefGoogle Scholar
  15. 15.
    Lee SH, Vigliotti VS, Vigliotti JS, Vigliotti JS, Pappu S (2007) Routine human papillomavirus genotyping by DNA sequencing in community hospital laboratories. Infect Agent Cancer 2:11PubMedCrossRefGoogle Scholar
  16. 16.
    Lee SH, Vigliotti VS, Pappu S (2009) Human papillomavirus (HPV) infection among women in a representative rural and suburban population of the United States. Inter J Gyn Ob 105:210–214CrossRefGoogle Scholar
  17. 17.
    Lee SH, Vigliotti VS, Pappu S (2009) Molecular tests for human papillomavirus (HPV), Chlamydia trachomatis and Neisseria gonorrhoeae in liquid-based cytology specimen. BMC Wom Health 9:8CrossRefGoogle Scholar
  18. 18.
    Lee SH, Vigliotti VS, Vigliotti JS, Pappu S (2009) Validation of human papillomavirus genotyping by signature DNA sequence analysis. BMC Clin Pathol 9:3PubMedCrossRefGoogle Scholar
  19. 19.
    Lee SH, Vigliotti VS, Pappu S (2010) Signature sequence validation of human papillomavirus type 16 (HPV-16) in clinical specimens. J Clin Pathol 63:235–239PubMedCrossRefGoogle Scholar
  20. 20.
    Carvalho Nde O, del Castillo DM, Perone C, Januário JN, de Melo VH, Brasileiro Filho G (2010) Comparison of HPV genotyping by type-specific PCR and sequencing. Mem Inst Oswaldo Cruz 105:73–78PubMedCrossRefGoogle Scholar
  21. 21.
    Coutlée F, Rouleau D, Petignat P, Ghattas G, Kornegay JR, Schlag P, Boyle S, Hankins C, Vézina S, Coté P, Macleod J, Voyer H, Forest P, Walmsley S, Canadian Women’s HIV study Group, Franco E (2006) Enhanced detection and typing of human papillomavirus (HPV) DNA in anogenital samples with PGMY primers and the Linear array HPV genotyping test. J Clin Microbiol 44:1998–2006PubMedCrossRefGoogle Scholar
  22. 22.
    Habis AH, Vernon SD, Lee DR, Verma M, Unger ER (2004) Molecular quality of exfoliated cervical cells: implications for molecular epidemiology and biomarker discovery. Cancer Epidemiol Biomarkers Prev 13:492–496PubMedGoogle Scholar
  23. 23.
    Dunn ST, Allen RA, Wang S, Walker J, Schiffman M (2007) DNA extraction: an understudied and important aspect of HPV genotyping using PCR-based methods. J Virol Methods 143:45–54PubMedCrossRefGoogle Scholar
  24. 24.
    Sherman ME, Wang SS, Wheeler CM, Rich L, Gravitt PE, Tarone R, Schiffman M (2003) Determinants of human papillomavirus load among women with histological cervical intraepithelial neoplasia 3: dominant impact of surrounding low-grade lesions. Cancer Epidemiol Biomarkers Prev 12:1038–1044PubMedGoogle Scholar
  25. 25.
    Sherman ME, Wang SS, Tarone R, Rich L, Schiffman M (2003) Histopathologic extent of cervical intraepithelial neoplasia 3 lesions in the atypical squamous cells of undetermined significance low-grade squamous intraepithelial lesion triage study: implications for subject safety and lead-time bias. Cancer Epidemiol Biomarkers Prev 12:372–379PubMedGoogle Scholar
  26. 26.
    Garner-Hamrick PA, Fisher C (2002) HPV episomal copy number closely correlates with cell size in keratinocyte monolayer cultures. Virology 301:334–341PubMedCrossRefGoogle Scholar
  27. 27.
    Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM. Use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7/Molecular diagnostics of human cancer. 1989 Cold Spring Harbor Laboratory, pp 209–214Google Scholar
  28. 28.
    Snijders PJ, van den Brule AJ, Schrijnemakers HF, Snow G, Meijer CJ, Walboomers JM (1990) The use of general primers in the polymerase chain reaction permits the detection of a broad spectrum of human papillomavirus genotypes. J Gen Virol 71:173–181PubMedCrossRefGoogle Scholar
  29. 29.
    Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky JJ (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18:999–1005PubMedCrossRefGoogle Scholar
  30. 30.
    O’Dell SD, Humphries SE, Day IN (1996) PCR induction of a TaqI restriction site at any CpG dinucleotide using two mismatched primers (CpG-PCR). Genome Res 6:558–568PubMedCrossRefGoogle Scholar
  31. 31.
    U.S. Patent #6,165,765Google Scholar
  32. 32.
    Lee SH, Vigliotti VS, Pappu S (2008) DNA sequencing validation of Chlamydia trachomatis and Neisseria gonorrhoeae nucleic acid tests. Am J Clin Pathol 129:852–859PubMedCrossRefGoogle Scholar
  33. 33.
    Lee SH, Vigliotti VS, Viglioti JS, Jones W, Pappu S (2010) Increased sensitivity and specificity of Borrelia burgdorferi 16S ribosomal DNA detection. Am J Clin Pathol 133:569–576PubMedCrossRefGoogle Scholar
  34. 34.
    Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557PubMedGoogle Scholar
  35. 35.
    Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlée F, Hildesheim A, Schiffman MH, Scott DR, Apple RJ (2000) Improved amplification of genital human papillomaviruses. J Clin Microbiol 38:357–361PubMedGoogle Scholar
  36. 36.
    Sahli R. Meeting report. WHO HPV LabNet training workshop on HPV genotyping and HPV serology laboratory performance. Lausanne, Switzerland 15–18 March 2010. http://www.who.int/biologicals/vaccines/hpv/HPV_Training_Workshop_CHUV_mTG_report_20052010.pdf
  37. 37.
    Qu W, Jiang G, Cruz Y, Chang CJ, Ho GY, Klein RS, Burk RD (1997) PCR detection of human papillomavirus: comparison between MY09/MY11 and GP5+/GP6+ primer systems. J Clin Microbiol 35:1304–1310PubMedGoogle Scholar
  38. 38.
    Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander-Horn PB (2004) A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res 32:1197–1207PubMedCrossRefGoogle Scholar
  39. 39.
    Earley JJ, Kuivaniemi H, Prockop DJ, Tromp G (1993) Efficient DNA sequencing on microtiter plates using dried reagents and Bst DNA polymerase. DNA Seq 4:79–85PubMedGoogle Scholar
  40. 40.
    Evans MF, Adamson CS, Simmons-Arnold L, Cooper K (2005) Touchdown general primer (GP5+/GP6+) PCR and optimized sample DNA concentration support the sensitive detection of human papillomavirus. BMC Clin Pathol 5:10PubMedCrossRefGoogle Scholar
  41. 41.
    Liu SS, Leung RC, Chan KK, Cheung AN, Ngan HY (2010) Evaluation of a newly developed GenoArray human papillomavirus (HPV) genotyping assay and comparison with the Roche Linear Array HPV genotyping assay. J Clin Microbiol 48:758–764PubMedCrossRefGoogle Scholar
  42. 42.
    Apfalter P, Assadian O, Blasi F, Boman J, Gaydos CA, Kundi M, Makristathis A, Nehr M, Rotter ML, Hirschl AM (2002) Reliability of nested PCR for detection of Chlamydia pneumoniae DNA in atheromas: results from a multicenter study applying standardized protocols. J Clin Microbiol 40:4428–4434PubMedCrossRefGoogle Scholar
  43. 43.
    Ayatollahi M, Zakerinia M, Haghshenas M (2005) Molecular analysis of Iranian families with sickle cell disease. J Trop Pediatr 51:136–140PubMedCrossRefGoogle Scholar
  44. 44.
    Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International Biological Study on Cervical Cancer (IBSCC) Study Group. J Natl Cancer Inst 87:796–802PubMedCrossRefGoogle Scholar
  45. 45.
    Schiffman MH, Castle P (2003) Epidemiologic studies of a necessary causal risk factor: human papillomavirus infection and cervical neoplasia. J Natl Cancer Inst 95:E2PubMedCrossRefGoogle Scholar
  46. 46.
    Davey DD, Cox JT, Austin RM, Birdsong G, Colgan TJ, Howell LP, Husain M, Darragh TM (2008) Cervical cytology specimen adequacy: patient management guidelines and optimizing specimen collection. J Low Genit Tract Dis 12:71–81PubMedCrossRefGoogle Scholar
  47. 47.
    Didelot-Rousseau MN, Courgnaud V, Nagot N, Ouedraogo A, Konate I, Mayaud P, Weiss H, Van de Perre P, Segondy M (2006) Comparison of INNO-LiPA HPV Genotyping v2 with PCR product subcloning and sequencing for identification of genital human papillomavirus genotypes in African women. J Virol Methods 135:181–185PubMedCrossRefGoogle Scholar
  48. 48.
    de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ (1995) The use of general primers GP5 and GP6 elongated at their 3′ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 76:1057–1062PubMedCrossRefGoogle Scholar
  49. 49.
    Wallin KL, Wiklund F, Angström T, Bergman F, Stendahl U, Wadell G, Hallmans G, Dillner J (1999) Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer. N Engl J Med 341:1633–1638PubMedCrossRefGoogle Scholar
  50. 50.
    Kjaer SK, van den Brule AJ, Paull G, Svare EI, Sherman ME, Thomsen BL, Suntum M, Bock JE, Poll PA, Meijers CJ (2002) Type specific persistence of high risk human papillomavirus (HPV) as indicator of high grade cervical squamous intraepithelial lesions in young women: population based prospective follow up study. BMJ 325:572–576PubMedCrossRefGoogle Scholar
  51. 51.
    Cuschieri KS, Cubie HA, Whitley MW, Gilkison G, Arends MJ, Graham C, McGoogan E (2005) Persistent high risk HPV infection associated with development of cervical neoplasia in a prospective population study. J Clin Pathol 58:946–950PubMedCrossRefGoogle Scholar
  52. 52.
    Coutlée F, Gravitt P, Kornegay J, Hankins C, Richardson H, Lapointe N, Voyer H, Franco E (2002) Use of PGMY primers in L1 consensus PCR improves detection of human papillomavirus DNA in genital samples. J Clin Microbiol 40:902–907PubMedCrossRefGoogle Scholar
  53. 53.
    Brown DR, Shew ML, Qadadri B, Neptune N, Vargas M, Tu W, Juliar BE, Breen TE, Fortenberry JD (2005) Longitudinal study of genital human papillomavirus infection in a cohort of closely followed adolescent women. J Infect Dis 191:182–192PubMedCrossRefGoogle Scholar
  54. 54.
    Dunne EF, Unger ER, Sternberg M, McQuillan G, Swan DC, Patel SS, Markowitz LE (2007) Prevalence of HPV infection among females in the United States. JAMA 297:813–819PubMedCrossRefGoogle Scholar
  55. 55.
    Check W (2010) HPV testing – proceed, with caution. CAP Today 24(October):1–74Google Scholar
  56. 56.
    Stoler MH, Castle PE, Solomon D, Schiffman M (2007) The expanded use of HPV testing in gynecologic practice per ASCCP-guided management requires the use of well-validated assays. Am J Clin Pathol 127:1–3CrossRefGoogle Scholar
  57. 57.
    Schiffman M, Rodríguez AC (2008) Heterogeneity in CIN3 diagnosis. Lancet Oncol 9:404–406, A comment on the article – McCredie MR, Sharples KJ, Paul C, Baranyai J, Medley G, Jones RW, Skegg DC (2008) Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol 9:425–434PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of PathologyMilford HospitalMilfordUSA

Personalised recommendations