Guidelines for the Use of Molecular Biological Methods to Detect Sexually Transmitted Pathogens in Cases of Suspected Sexual Abuse in Children

  • Margaret R. HammerschlagEmail author
  • Charlotte A. Gaydos
Part of the Methods in Molecular Biology book series (MIMB, volume 903)


Testing for sexually transmitted infections (STIs) in children presents a number of problems for the practitioner that are not usually faced when testing adults for the same infections. The identification of an STI in a child, in addition to medical implications, can have serious legal implications. The presence of an STI is often used to support the presence or allegations of sexual abuse and conversely, the identification of an STI in a child will prompt an investigation of possible abuse. The significance of the identification of a sexually transmitted agent in such children as evidence of possible child sexual abuse varies by pathogen.

While culture has historically been used for the detection of STIs in cases of suspected abuse in children, the increasing use of nucleic acid amplification tests (NAATs) in adults and the increasing proliferation of second-generation tests with better sensitivity and specificity has made inroads into the use of such tests in children, especially for diagnostic and treatment purposes. Acceptance by the medicolegal system for sexual abuse cases is still controversial and more test cases will be necessary before definitive use becomes standard practice. In addition, if these assays ever become legally admissible in court, there will be recommendations that more than one NAAT assay be used in order to assure confirmation of the diagnostic result.

Key words

Chlamydia trachomatis Neisseria gonorrhoeae Nucleic acid amplification tests Polymerase chain reaction Sexual abuse Strand displacement amplification Transcription-mediated amplification Trichomonas vaginalis 


  1. 1.
    Campbell LA, Kuo CC, Gaydos CA (2006) Chlamydial infections. In: Detrick B, Hamilton RG, Folds JD (eds) Manual of molecular and clinical laboratory immunology. ASM, Washington, DC, pp 518–525Google Scholar
  2. 2.
    Kuypers J, Gaydos CA, Peeling RW (2008) Principles of laboratory diagnosis of STI. In: Holmes KK, Sparling PF, Stamm WE, Piot P, Wasserheit JN, Corey L, Cohen M, Watts DH (eds) Sexually transmitted diseases. McGraw Hill, New York, NY, pp 937–957Google Scholar
  3. 3.
    Gaydos CA (2009) Chlamydiae. In: Spector S, Hodinka RL, Young SA, Wiedbrauk DL (eds) Clinical virology manual. ASM, Washington, DC, pp 630–640Google Scholar
  4. 4.
    Gaydos CA, Cartwight CP, Colaninno P, Welsch J, Holden J, Ho SY, Webb EM, Anderson C, Bertuzis E, Zhang L, Miller T, Eckie G, Bravaya K, Robinson K (2010) Performance of the Abbott RealTime CT/NG for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol 48:3336–3343Google Scholar
  5. 5.
    APHL/CDC Panel Summary Reports: Laboratory Diagnostic Testing for Chlamydia trachomatis and Neisseria gonorrhoeae, and Laboratory Diagnostic Testing for Treponema pallidum (2009) Guidelines for the Laboratory Testing of STDs.
  6. 6.
    Clark RB, Lewinski MA, Leoffelholz MJ, Tibbetts RJ (2009) Verification and validation of procedures in the clinical microbiology laboratory. Cumitech (ASM Press) 31A:1–24Google Scholar
  7. 7.
    Hammerschlag MR, Guillen CD (2010) Medical and legal implications of testing for sexually transmitted infections in children. Clin Microbiol Rev 23:493–506PubMedCrossRefGoogle Scholar
  8. 8.
    Tabrizi SN, Chen S, Cohenford MA, Lentrichia BB, Coffman E, Schultz T, Tapsall JW, Garland SM (2004) Evaluation of real time polymerase chain reaction assays confirmation of Neisseria gonorrhoeae in clinical samples tested positive in the Roche Cobas Amplicor assay. Sex Transm Infect 80:68–71PubMedCrossRefGoogle Scholar
  9. 9.
    Whiley DM, Tapsall JW, Sloots TP (2006) Nucleic acid amplification testing for Neisseria gonorrhoeae. An ongoing challenge. J Mol Diagn 8:3–14PubMedCrossRefGoogle Scholar
  10. 10.
    Whiley DM, Garland SM, Harnett G, Lum G, Smith DW, Tabrizi SN, Sloots TP, Tapsall JW (2008) Exploring “best practice” for nucleic acid detection of Neisseria gonorrhoeae. Sex Health 5:12–23CrossRefGoogle Scholar
  11. 11.
    Schachter J, Hook EW, Martin DH, Willis D, Fine P, Fuller D, Jordan J, Janda WM, Chernesky M (2005) Confirming positive results of nucleic acid amplification tests (NAATs) for Chlamydia trachomatis: all NAATs are not created equal. J Clin Microbiol 43:1372–1373PubMedCrossRefGoogle Scholar
  12. 12.
    Palmer HM, Mallinson H, Wood RL, Herring AJ (2003) Evaluation of the specificities of five DNA amplification methods for the detection of Neisseria gonorrhoeae. J Clin Microbiol 41:835–837PubMedCrossRefGoogle Scholar
  13. 13.
    Mc Nally L, Templeton DJ, Jin F, Grulich AE, Donovan B, Whiley DM, Cunningham PH (2008) Low positive predictive value of a nucleic acid amplification test for nongenital Neisseria gonorrhoeae infection in homosexual men. Clin Infect Dis 47:e25–e27CrossRefGoogle Scholar
  14. 14.
    Schachter J, Moncada J, Liska S, Shayevich C, Klausner JD (2008) Nucleic acid amplification tests in the diagnosis of chlamydial and gonococcal infections of the oropharynx and rectum in men who have sex with menby. Sex Transm Dis 35:637–642PubMedCrossRefGoogle Scholar
  15. 15.
    Bachmann LH, Johnson RE, Cheng H, Markowitz RE, Papp JR, Hook EW III (2009) Nucleic amplification tests for diagnosis of Neisseria gonorrhoeae oropharyngeal infections. J Clin Microbiol 42:902–907CrossRefGoogle Scholar
  16. 16.
    Ota KV, Tamari IE, Smieja M, Jamieson F, Jones K, Towns EL, Juzkiw J, Richardson SE (2009) Detection of Neisseria gonorrhoeae and Chlamydia trachomatis in pharyngeal and rectal specimens using the BD Probetec ET system, the Gen-Probe Aptima combo2 assay and culture. Sex Transm Infect 85:182–186PubMedCrossRefGoogle Scholar
  17. 17.
    Black CM, Driebe EM, Howard LA, Fajman NN, Sawyer MK, Girardet RG, Sautter RL, Greenwald E, Beck-Sague CM, Unger ER, Igietseme JU, Hammerschlag MR (2009) Multicenter study of nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in children being evaluated for sexual abuse. Pediatr Infect Dis J 28:608–613PubMedCrossRefGoogle Scholar
  18. 18.
    Heger A, Ticson L, Velasquez O, Bernier R (2002) Children referred for possible sexual abuse: medical findings in 2384 children. Child Abuse Negl 26:645–659PubMedCrossRefGoogle Scholar
  19. 19.
    Kellogg ND, Baillargeon J, Lukefahr JL, Lawless K, Menard SW (2004) Comparison of nucleic acid amplification tests and culture techniques in the detection of Neisseria gonorrhoeae and Chlamydia trachomatis in victims of suspected child sexual abuse. J Pediatr Adolesc Gynecol 17:331–339PubMedCrossRefGoogle Scholar
  20. 20.
    Girardet R, Lahoti GS, Howard LA, Fajman NN, Sawyer MK, Driebe EM, Lee F, Sautter RL, Greenwald E, Beck-Sague CM, Hammerschlag MR, Black CM (2009) The epidemiology of sexually transmitted infections in suspected child victims of sexual assault. Pediatrics 124:79–86PubMedCrossRefGoogle Scholar
  21. 21.
    Centers for Disease Control and Prevention (2002) Recall of LCx Neisseria gonorrhoeae assay and implications for laboratory testing for N. gonorrhoeae and C. trachomatis. Morb Mortal Wkly Rep 51:709Google Scholar
  22. 22.
    Xu K, Glanton V, Johnson SR, Beck-Sague C, Bhullar V, Candal DH, Pettus KS, Farshy CE, Black CM (1998) Detection of Neisseria gonorrhoeae infection by ligase chain reaction testing of urine among adolescent women with and without Chlamydia trachomatis. Sex Transm Dis 25:533–538PubMedCrossRefGoogle Scholar
  23. 23.
    Centers for Disease Control and Prevention (2010) Sexually transmitted disease treatment guidelines, 2010. MMWR 59(RR-12):1–110Google Scholar
  24. 24.
    Ripa T, Nilsson PA (2007) A Chlamydia trachomatis strain with a 377-bp deletion in the cryptic plasmid causing false-negative nucleic acid amplification tests. Sex Tansm Dis 34:255–256Google Scholar
  25. 25.
    Gaydos CA, Hardick A, Ramachandron P, Papp J, Steece R, Vanderpol B, Moncada J, Schachter J (2008) Development of a specific PCR for detection of the new variant strain of Chlamydia trachomatis and surveillance in the United States. In: Sixth Meeting of the European Society for Chlamydia Research, Aarhus, Denmark, 1–4 July 2008, p 63Google Scholar
  26. 26.
    Bandea CI, Kubota K, Brown TM, Kilmarx PH, Bhullar V, Yampaisarn S, Chaisilwattana P, Siriwasin W, Black CM (2001) Typing of Chlamydia trachomatis strains from urine samples by amplification and sequencing the major outer membrane protein gene (omp1). Sex Transm Infect 77:419–422PubMedCrossRefGoogle Scholar
  27. 27.
    Schachter J, Chow CM, Howard H, Bolan G, Moncada J (2006) Detection of Chlamydia trachomatis by nucleic acid amplification testing: our evaluation suggests that CDC-recommended approaches for confirmatory testing are ill advised. J Clin Microbiol 44:2512–2517PubMedCrossRefGoogle Scholar
  28. 28.
    Centers for Disease Control and Prevention (2010) Sexually transmitted disease surveillance, 2009. U.S. Department of Health and Human Services, Atlanta, GA (CDC Scholar
  29. 29.
    Van Der Pol B, Williams JA, Orr DP, Batteiger BE, Fortenberry JD (2005) Prevalence, incidence, natural history, and response to treatment of Trichomonas vaginalis infection among adolescent women. J Infect Dis 192:2039–2044CrossRefGoogle Scholar
  30. 30.
    Weinstock H, Berman B, Cates W (2004) Sexually transmitted disease among American youth: incidence and prevalence estimates. Perspect Sex Repro Health 36:6–10CrossRefGoogle Scholar
  31. 31.
    Cotch MF, Pastorek JG, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey J, Regan A, Krohn MA, Klebanoff MA, Rao AV, Rhodes GG (1997) Tricho­monas vaginalis associated with low birth weight and preterm delivery. Sex Tansm Dis 24:353–360CrossRefGoogle Scholar
  32. 32.
    Schwebke JR, Burgess D (2004) Trichomoniasis. Clin Microbiol Rev 17:794–803PubMedCrossRefGoogle Scholar
  33. 33.
    Kohlberger P, Bancher-Todesca B (2007) Bacterial colonization in suspected sexually abused children. J Pediatr Adolesc Gynecol 20:289–292PubMedCrossRefGoogle Scholar
  34. 34.
    Kelly P, Koh J (2006) Sexually transmitted infections in alleged sexual abuse of children and adolescents. J Paediatr Child Health 42:434–440PubMedCrossRefGoogle Scholar
  35. 35.
    Simmons KJ, Hicks DJ (2005) Child sexual abuse examination: Is there a need for routine screening for N. gonorrhoeae and C. trachomatis. J Pediatr Adolesc Gynecol 18:345CrossRefGoogle Scholar
  36. 36.
    Beck-Sague CM, Solomon F (1999) Sexually transmitted diseases in sexually abused children adolescent and adult victims of rape: review of selected literature. Clin Infect Dis 28(Suppl 1):S74–S83PubMedCrossRefGoogle Scholar
  37. 37.
    Schwandt A, Williams C, Beigi RH (2008) Perinatal transmission of Trichomonas vaginalis. J Reprod Med 53:59–61PubMedGoogle Scholar
  38. 38.
    Trintis J, Epie N, Boss R, Riedel S (2010) Neonatal Trichomonas vaginalis infection: a case report and review of the literature. Internat J STD AIDS 2:606–607CrossRefGoogle Scholar
  39. 39.
    Briselden AM, Hillier SL (1994) Evaluation of Affirm VP Microbial Identification Test for Gardnerella vaginalis and Trichomonas vaginalis. J Clin Microbiol 32:148–152PubMedGoogle Scholar
  40. 40.
    Huppert JS, Batteiger BE, Braslins P, Feldman JA, Hobbs MM, Sankey HZ, Sena AC, Wendel KA (2005) Use of an immunochromatographic assay for rapid detection of Trichomonas vaginalis in vaginal specimens. J Clin Microbiol 43:684–687PubMedCrossRefGoogle Scholar
  41. 41.
    Nye MB, Schwebke JR, Body BA (2009) Comparison of APTIMA Trichomonas vaginalis transcription-mediated amplification to wet mount microscopy, culture, and polymerase chain reaction for diagnosis of trichomoniasis in men and women. Am J Obstet Gynecol 200:188.e1–188.e7CrossRefGoogle Scholar
  42. 42.
    Huppert JS, Mortensen JE, Reed JL, Kahn JA, Rich KD, Miller WC, Hobbs MM (2007) Rapid antigen testing compares favorably with transcription-mediated amplification assay for the detection of Trichomonas vaginalis in young women. Clin Infect Dis 45:194–198PubMedCrossRefGoogle Scholar
  43. 43.
    Wendel KE, Erbelding EJ, Gaydos CA, Rompalo AM (2003) Use of urine polymerase chain reaction to define the prevalence and clinical presentation of Trichomonas vaginalis in men attending an STD slinic. Sex Transm Infect 79:151–153PubMedCrossRefGoogle Scholar
  44. 44.
    Wendel KE, Erbelding EJ, Gaydos CA, Rompalo AM (2002) Trichomonas vaginalis polymerase chain reaction compared with standard diagnostic and therapeutic protocols for detection and treatment of vaginal trichomoniasis. Clin Infect Dis 35:576–580PubMedCrossRefGoogle Scholar
  45. 45.
    Hardick J, Yang S, Lin L, Duncan D, Gaydos CA (2003) Use of the Roche LightCycler Instrument in a Real-Time PCR for Trichomonas vaginalis in urine samples from females and males. J Clin Microbiol 41:5619–5622PubMedCrossRefGoogle Scholar
  46. 46.
    Kaydos-Daniels SC, Miller WC, Hoffman I, Bnda T, Dzinyemba W, Martinson F, Cohen MS, Hobbs MM (2003) Validation of a urine-based PCR-enzyme-linked immunosorbent assay for use in clinical research settings to detect Trichomonas vaginalis in men. J Clin Microbiol 41:318–323PubMedCrossRefGoogle Scholar
  47. 47.
    Kaydos SC, Swygard H, Wise SL, Sena AC, Leone PA, Miller WC, Cohen MS, Hobbs MM (2002) Development and validation of a PCR-based enzyme-linked immunosorbant assay with urine for use in clinical research settings to detect Trichomonas vaginalis in women. J Clin Microbiol 40:89–95PubMedCrossRefGoogle Scholar
  48. 48.
    Hobbs MM, Kazembe P, Reed AW, Miller W, Nkata E, Zimba D, Daly C, Charkraborty H, Cohen M, Hoffman I (1999) Trichomonnas vaginalis as a cause of urethritis in Malawian men. Sex Transm Dis 26:381–387PubMedCrossRefGoogle Scholar
  49. 49.
    Hardick A, Hardick J, Wood BJ, Gaydos CA (2006) Comparison between the Prototype Gen-Probe TMA Trichomonas vaginalis assay and a Real-time PCR for Trichomonas vaginalis using the Roche Lightcycler Instrument in Female self-administered vaginal swabs and Male urine samples. J Clin Microbiol 44:4197–4199PubMedCrossRefGoogle Scholar
  50. 50.
    Soper D (2004) Trichomoniasis: under control or undercontrolled? Am J Obstet Gynecol 190:281–290PubMedCrossRefGoogle Scholar
  51. 51.
    Gaydos CA, Maldeis NE, Hardick A, Hardick J, Quinn TC (2009) Mycoplasma genitalium as a contributor to the multiple etiologies of cervicitis in women attending STD clinics. Sex Tansm Dis 36:598–606CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Margaret R. Hammerschlag
    • 1
    Email author
  • Charlotte A. Gaydos
    • 1
  1. 1.Division of Pediatric Infectious Diseases, Department of PediatricsState University of New York Downstate Medical CenterBrooklynUSA

Personalised recommendations