The Application of Transgenic Mice for Therapeutic Antibody Discovery

  • E-Chiang LeeEmail author
  • Michael Owen
Part of the Methods in Molecular Biology book series (MIMB, volume 901)


In 2006, panitumumab, the first fully human antibody generated from transgenic mice, was approved for clinical use by the US Food and Drug Administration (FDA). Since then, a further seven such antibodies have been approved. In this chapter, we discuss how transgenic mice technologies can provide a powerful platform for creating human therapeutic antibodies.

Key words

ES cells Homologous recombination Human antibody Humanized mice Ig locus Immunoglobulin Isotype Phage display Transgenic mice Therapeutic antibody 



We thank Allan Bradley, Andrew Sandham, and Glenn Friedrich for critical comments, and all other colleagues at Kymab for helpful discussion.


  1. 1.
    Ganesh K, Neuberger MS (2011) The relationship between hypothesis and experiment in unveiling the mechanisms of antibody gene diversification. FASEB J 25:1123–1132PubMedCrossRefGoogle Scholar
  2. 2.
    Neuberger MS (2008) Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 86:124–132PubMedCrossRefGoogle Scholar
  3. 3.
    Cyster JG (2010) Shining a light on germinal center B cells. Cell 143:503–505PubMedCrossRefGoogle Scholar
  4. 4.
    Alt FW, Blackwell TK, Yancopoulos GD (1985) Immunoglobulin genes in transgenic mice. Trends Genet 1:231–236CrossRefGoogle Scholar
  5. 5.
    Storb U, Peters A, Klotz E et al (1998) Immunoglobulin transgenes as targets for somatic hypermutation. Int J Dev Biol 42: 977–982PubMedGoogle Scholar
  6. 6.
    Bruggemann M, Caskey HM, Teale C et al (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci U S A 86:6709–6713PubMedCrossRefGoogle Scholar
  7. 7.
    Taylor LD, Carmack CE, Schramm SR et al (1992) A transgenic mouse that expresses a diversity of human sequence heavy and light chain immunoglobulins. Nucleic Acids Res 20: 6287–6295PubMedCrossRefGoogle Scholar
  8. 8.
    Lonberg N, Taylor LD, Harding FA et al (1994) Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368:856–859PubMedCrossRefGoogle Scholar
  9. 9.
    Green LL, Hardy MC, Maynard-Currie CE et al (1994) Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs. Nat Genet 7:13–21PubMedCrossRefGoogle Scholar
  10. 10.
    Fishwild DM, O’Donnell SL, Bengoechea T et al (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14: 845–851PubMedCrossRefGoogle Scholar
  11. 11.
    Mendez MJ, Green LL, Corvalan JR et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156PubMedCrossRefGoogle Scholar
  12. 12.
    Nicholson IC, Zou X, Popov AV et al (1999) Antibody repertoires of four- and five-feature translocus mice carrying human immunoglobulin heavy chain and kappa and lambda light chain yeast artificial chromosomes. J Immunol 163:6898–6906PubMedGoogle Scholar
  13. 13.
    Tomizuka K, Yoshida H, Uejima H et al (1997) Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet 16:133–143PubMedCrossRefGoogle Scholar
  14. 14.
    Tomizuka K, Shinohara T, Yoshida H et al (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727PubMedCrossRefGoogle Scholar
  15. 15.
    Davis MM (2004) The evolutionary and structural ‘logic’ of antigen receptor diversity. Semin Immunol 16:239–243PubMedCrossRefGoogle Scholar
  16. 16.
    Xu JL, Davis MM (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45PubMedCrossRefGoogle Scholar
  17. 17.
    Scott CT (2007) Mice with a human touch. Nat Biotechnol 25:1075–1077PubMedCrossRefGoogle Scholar
  18. 18.
    Khamlichi AA, Pinaud E, Decourt C et al (2000) The 3′ IgH regulatory region: a complex structure in a search for a function. Adv Immunol 75:317–345PubMedCrossRefGoogle Scholar
  19. 19.
    Staudt LM, Lenardo MJ (1991) Immunoglobulin gene transcription. Annu Rev Immunol 9:373–398PubMedCrossRefGoogle Scholar
  20. 20.
    Shaw AC, Mitchell RN, Weaver YK et al (1990) Mutations of immunoglobulin transmembrane and cytoplasmic domains: effects on intracellular signaling and antigen presentation. Cell 63: 381–392PubMedCrossRefGoogle Scholar
  21. 21.
    Blum JH, Stevens TL, DeFranco AL (1993) Role of the mu immunoglobulin heavy chain transmembrane and cytoplasmic domains in B cell antigen receptor expression and signal transduction. J Biol Chem 268:27236–27245PubMedGoogle Scholar
  22. 22.
    DeFranco AL, Richards JD, Blum JH et al (1995) Signal transduction by the B-cell antigen receptor. Ann N Y Acad Sci 766:195–201PubMedCrossRefGoogle Scholar
  23. 23.
    Zou YR, Muller W, Gu H et al (1994) Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr Biol 4:1099–1103PubMedCrossRefGoogle Scholar
  24. 24.
    Valenzuela DM, Murphy AJ, Frendewey D et al (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21: 652–659PubMedCrossRefGoogle Scholar
  25. 25.
    Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774PubMedCrossRefGoogle Scholar
  26. 26.
    Bradbury AR, Sidhu S, Dubel S et al (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29: 245–254PubMedCrossRefGoogle Scholar
  27. 27.
    Ponsel D, Neugebauer J, Ladetzki-Baehs K et al (2011) High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16: 3675–3700PubMedCrossRefGoogle Scholar
  28. 28.
    Prusiner SB, Groth D, Serban A et al (1993) Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci U S A 90:10608–10612PubMedCrossRefGoogle Scholar
  29. 29.
    Williamson RA, Peretz D, Smorodinsky N et al (1996) Circumventing tolerance to generate autologous monoclonal antibodies to the prion protein. Proc Natl Acad Sci U S A 93: 7279–7282PubMedCrossRefGoogle Scholar
  30. 30.
    Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503PubMedCrossRefGoogle Scholar
  31. 31.
    Verthelyi D, Wang V (2010) Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One 5:e15252PubMedCrossRefGoogle Scholar
  32. 32.
    Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A 94: 12297–12302PubMedCrossRefGoogle Scholar
  33. 33.
    Lonberg N (2008) Human monoclonal antibodies from transgenic mice. Handb Exp Pharmacol 181:69–97PubMedCrossRefGoogle Scholar
  34. 34.
    Pavri R, Nussenzweig MC (2011) AID targeting in antibody diversity. Adv Immunol 110: 1–26PubMedCrossRefGoogle Scholar
  35. 35.
    Rada C, Ehrenstein MR, Neuberger MS et al (1998) Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9: 135–141PubMedCrossRefGoogle Scholar
  36. 36.
    Ehrenstein MR, Neuberger MS (1999) Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J 18: 3484–3490PubMedCrossRefGoogle Scholar
  37. 37.
    Bransteitter R, Pham P, Scharff MD et al (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A 100:4102–4107PubMedCrossRefGoogle Scholar
  38. 38.
    Kohli RM, Abrams SR, Gajula KS et al (2009) A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem 284:22898–22904PubMedCrossRefGoogle Scholar
  39. 39.
    Wang M, Rada C, Neuberger MS (2010) Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. J Exp Med 207:141–153PubMedCrossRefGoogle Scholar
  40. 40.
    Bender NK, Heilig CE, Droll B et al (2007) Immunogenicity, efficacy and adverse events of adalimumab in RA patients. Rheumatol Int 27: 269–274PubMedCrossRefGoogle Scholar
  41. 41.
    Coenen MJ, Toonen EJ, Scheffer H et al (2007) Pharmacogenetics of anti-TNF treatment in patients with rheumatoid arthritis. Pharmacogenomics 8:761–773PubMedCrossRefGoogle Scholar
  42. 42.
    Getts DR, Getts MT, McCarthy DP et al (2010) Have we overestimated the benefit of human(ized) antibodies? MAbs 2:682–694PubMedCrossRefGoogle Scholar
  43. 43.
    Shealy D, Cai A, Staquet K et al (2010) Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor alpha. MAbs 2:428–439Google Scholar
  44. 44.
    Kay J, Rahman MU (2010) Golimumab: a novel human anti-TNF-alpha monoclonal antibody for the treatment of rheumatoid arthritis, ankylosing spondylitis, and psoriatic arthritis. Core Evid 4:159–170PubMedGoogle Scholar
  45. 45.
    Varriale S, Merlino A, Coscia MR et al (2010) An evolutionary conserved motif is responsible for immunoglobulin heavy chain packing in the B cell membrane. Mol Phylogenet Evol 57: 1238–1244PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Kymab Ltd, MeditrinaCambridgeUK

Personalised recommendations