Therapeutic Proteins pp 187-202

Part of the Methods in Molecular Biology book series (MIMB, volume 899)

Folding Engineering Strategies for Efficient Membrane Protein Production in E. coli



Membrane proteins are notoriously difficult to produce at the high levels required for structural and biochemical characterization. Among the various expression systems used to date, the enteric bacterium Escherichia coli remains one of the best characterized and most versatile. However, membrane protein overexpression in E. coli is often accompanied by toxicity and low yields of functional product. Here, we briefly review the involvement of signal recognition particle, trigger factor, and YidC in α-helical membrane protein biogenesis and describe a set of strains, vectors, and chaperone co-expression plasmids that can lead to significant gains in the production of recombinant membrane proteins in E. coli. Methods to quantify membrane proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis are also provided.

Key words

Molecular chaperone Insertase Trigger factor Signal recognition particle YidC 


  1. 1.
    Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038PubMedCrossRefGoogle Scholar
  2. 2.
    Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491PubMedCrossRefGoogle Scholar
  3. 3.
    Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141PubMedCrossRefGoogle Scholar
  4. 4.
    Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565:144–167PubMedCrossRefGoogle Scholar
  5. 5.
    Capaldi RA, Aggeler R (2002) Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor. Trends Biochem Sci 27:154–160PubMedCrossRefGoogle Scholar
  6. 6.
    Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Moller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042PubMedCrossRefGoogle Scholar
  7. 7.
    Gonen T, Walz T (2006) The structure of aquaporins. Q Rev Biophys 39:361–396PubMedCrossRefGoogle Scholar
  8. 8.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730PubMedCrossRefGoogle Scholar
  9. 9.
    McCusker EC, Bane SE, O’Malley MA, Robinson AS (2007) Heterologous GPCR expression: a bottleneck to obtaining crystal structures. Biotechnol Prog 23:540–547PubMedCrossRefGoogle Scholar
  10. 10.
    Curnow P (2009) Membrane proteins in nanotechnology. Biochem Soc Trans 37:643–652PubMedCrossRefGoogle Scholar
  11. 11.
    Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science (New York, NY) 290:1555–1558CrossRefGoogle Scholar
  12. 12.
    Choi HJ, Montemagno CD (2005) Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett 5:2538–2542PubMedCrossRefGoogle Scholar
  13. 13.
    Luo TJ, Soong R, Lan E, Dunn B, Montemagno C (2005) Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nat Mater 4:220–224PubMedCrossRefGoogle Scholar
  14. 14.
    Nakamura C, Hasegawa M, Yasuda Y, Miyake J (2000) Self-assembling photosynthetic reaction centers on electrodes for current generation. Appl Biochem Biotechnol 84–86:401–408PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang L, Zeng T, Cooper K, Claus RO (2003) High-performance photovoltaic behavior of oriented purple membrane polymer composite films. Biophys J 84:2502–2507PubMedCrossRefGoogle Scholar
  16. 16.
    Mo X, Krebs MP, Yu SM (2006) Directed synthesis and assembly of nanoparticles using purple membrane. Small 2:526–529PubMedCrossRefGoogle Scholar
  17. 17.
    Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690PubMedCrossRefGoogle Scholar
  18. 18.
    Kang XF, Cheley S, Guan X, Bayley H (2006) Stochastic detection of enantiomers. J Am Chem Soc 128:10684–10685PubMedCrossRefGoogle Scholar
  19. 19.
    Cheley S, Gu LQ, Bayley H (2002) Stochastic sensing of nanomolar inositol 1,4,5-trisphosphate with an engineered pore. Chem Biol 9:829–838PubMedCrossRefGoogle Scholar
  20. 20.
    Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773PubMedCrossRefGoogle Scholar
  21. 21.
    Kang XF, Cheley S, Rice-Ficht AC, Bayley H (2007) A storable encapsulated bilayer chip containing a single protein nanopore. J Am Chem Soc 129:4701–4705PubMedCrossRefGoogle Scholar
  22. 22.
    Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421PubMedCrossRefGoogle Scholar
  23. 23.
    Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371PubMedCrossRefGoogle Scholar
  24. 24.
    Weiner JH, Li L (2008) Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. Biochim Biophys Acta 1778:1698–1713PubMedCrossRefGoogle Scholar
  25. 25.
    Ulbrandt ND, Newitt JA, Bernstein HD (1997) The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88:187–196PubMedCrossRefGoogle Scholar
  26. 26.
    Yuan J, Zweers JC, van Dijl JM, Dalbey RE (2009) Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67:179–199PubMedCrossRefGoogle Scholar
  27. 27.
    Schierle CF, Berkmen M, Huber D, Kumamoto C, Boyd D, Beckwith J (2003) The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 185:5706–5713PubMedCrossRefGoogle Scholar
  28. 28.
    Bowers CW, Lau F, Silhavy TJ (2003) Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J Bacteriol 185:5697–5705PubMedCrossRefGoogle Scholar
  29. 29.
    Brown S, Fournier MJ (1984) The 4.5S RNA gene of Escherichia coli is essential for cell growth. J Mol Biol 178:533–550PubMedCrossRefGoogle Scholar
  30. 30.
    Phillips GJ, Silhavy TJ (1992) The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359:744–746PubMedCrossRefGoogle Scholar
  31. 31.
    Luirink J, Sinning I (2004) SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 1694:17–35PubMedGoogle Scholar
  32. 32.
    Pool MR, Stumm J, Fulga TA, Sinning I, Dobberstein B (2002) Distinct modes of signal recognition particle interaction with the ribosome. Science (New York, NY) 297:1345–1348CrossRefGoogle Scholar
  33. 33.
    Ullers RS, Houben EN, Raine A, ten Hagen-Jongman CM, Ehrenberg M, Brunner J, Oudega B, Harms N, Luirink J (2003) Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J Cell Biol 161:679–684PubMedCrossRefGoogle Scholar
  34. 34.
    Gu SQ, Peske F, Wieden HJ, Rodnina MV, Wintermeyer W (2003) The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9:566–573PubMedCrossRefGoogle Scholar
  35. 35.
    Luirink J, ten Hagen-Jongman CM, van der Weijden CC, Oudega B, High S, Dobberstein B, Kusters R (1994) An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J 13:2289–2296PubMedGoogle Scholar
  36. 36.
    de Leeuw E, Poland D, Mol O, Sinning I, ten Hagen-Jongman CM, Oudega B, Luirink J (1997) Membrane association of FtsY, the E. coli SRP receptor. FEBS Lett 416:225–229PubMedCrossRefGoogle Scholar
  37. 37.
    Bibi E (2011) Early targeting events during membrane protein biogenesis in Escherichia coli. Biochim Biophys Acta 1801:841–850Google Scholar
  38. 38.
    Luirink J, Samuelsson T, de Gier JW (2001) YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett 501:1–5PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang F, Yi L, Moore M, Chen M, Rohl T, Van Wijk KJ, De Gier JW, Henry R, Dalbey RE (2002) Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane ­insertion of both bacterial and chloroplast thylakoid proteins. J Biol Chem 277:19281–19288PubMedCrossRefGoogle Scholar
  40. 40.
    van Bloois E, Nagamori S, Koningstein G, Ullers RS, Preuss M, Oudega B, Harms N, Kaback HR, Herrmann JM, Luirink J (2005) The Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential. J Biol Chem 280:12996–13003PubMedCrossRefGoogle Scholar
  41. 41.
    Xie K, Dalbey RE (2008) Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 6:234–244PubMedGoogle Scholar
  42. 42.
    Nagamori S, Smirnova IN, Kaback HR (2004) Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165:53–62PubMedCrossRefGoogle Scholar
  43. 43.
    Kol S, Nouwen N, Driessen AJ (2008) Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes. J Biol Chem 283:31269–31273PubMedCrossRefGoogle Scholar
  44. 44.
    Houben EN, ten Hagen-Jongman CM, Brunner J, Oudega B, Luirink J (2004) The two membrane segments of leader peptidase partition one by one into the lipid bilayer via a Sec/YidC interface. EMBO Rep 5:970–975PubMedCrossRefGoogle Scholar
  45. 45.
    Beck K, Eisner G, Trescher D, Dalbey RE, Brunner J, Muller M (2001) YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2:709–714PubMedCrossRefGoogle Scholar
  46. 46.
    van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ (2004) F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 165:213–222PubMedCrossRefGoogle Scholar
  47. 47.
    Samuelson JC, Jiang F, Yi L, Chen M, de Gier JW, Kuhn A, Dalbey RE (2001) Function of YidC for the insertion of M13 procoat protein in Escherichia coli: translocation of mutants that show differences in their membrane potential dependence and Sec requirement. J Biol Chem 276:34847–34852PubMedCrossRefGoogle Scholar
  48. 48.
    Maier T, Ferbitz L, Deuerling E, Ban N (2005) A cradle for new proteins: trigger factor at the ribosome. Curr Opin Struct Biol 15:204–212PubMedCrossRefGoogle Scholar
  49. 49.
    Hoffmann A, Bukau B, Kramer G (2010) Structure and function of the molecular chaperone trigger factor. Biochim Biophys Acta 1803:650–661PubMedCrossRefGoogle Scholar
  50. 50.
    Kramer G, Rauch T, Rist W, Vordewulbecke S, Patzell H, Schulze-Specking A, Ban N, Deuerling E, Bukau B (2002) L23 functions as a chaperone docking site on the ribosome. Nature 419:171–174PubMedCrossRefGoogle Scholar
  51. 51.
    Hoffmann A, Merz F, Rutkowska A, Zachmann-Brand B, Deuerling E, Bukau B (2006) Trigger factor forms a protective shield for nascent polypeptides at the ribosome. J Biol Chem 281:6539–6545PubMedCrossRefGoogle Scholar
  52. 52.
    Patzelt H, Kramer G, Rauch T, Schonfeld HJ, Bukau B, Deuerling E (2002) Three-state equilibrium of Escherichia coli trigger factor. Biol Chem 383:1611–1619PubMedCrossRefGoogle Scholar
  53. 53.
    Buskiewicz I, Deuerling E, Gu SQ, Jockel J, Rodnina MV, Bukau B, Wintermeyer W (2004) Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc Natl Acad Sci USA 101:7902–7906PubMedCrossRefGoogle Scholar
  54. 54.
    Buskiewicz I, Deuerling E, Gu S-Q, Jöckel J, Rodnina MV, Bukau B, Wintermeyer W (2004) Trigger factor binds to ribosome-signal recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc Natl Acad Sci USA 101:7902–7906PubMedCrossRefGoogle Scholar
  55. 55.
    Deuerling E, Patzelt H, Vorderwulbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze-Specking A, Langen H, Bukau B (2003) Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 47:1317–1328PubMedCrossRefGoogle Scholar
  56. 56.
    Baneyx F, Nannenga BL (2010) Chaperones: a story of thrift unfolds. Nat Chem Biol 6:880–881PubMedCrossRefGoogle Scholar
  57. 57.
    Sharma SK, De los Rios P, Christen P, Lustig A, Goloubinoff P (2010) The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6:914–920PubMedCrossRefGoogle Scholar
  58. 58.
    Mujacic M, Cooper KW, Baneyx F (1999) Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238:325–332PubMedCrossRefGoogle Scholar
  59. 59.
    Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci USA 105:14371–14376PubMedCrossRefGoogle Scholar
  60. 60.
    Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130PubMedGoogle Scholar
  61. 61.
    Ren H, Yu D, Ge B, Cook B, Xu Z, Zhang S (2009) High-level production, solubilization and purification of synthetic human GPCR chemokine receptors CCR5, CCR3, CXCR4 and CX3CR1. PLoS One 4:e4509PubMedCrossRefGoogle Scholar
  62. 62.
    Hassan KA, Xu Z, Watkins RE, Brennan RG, Skurray RA, Brown MH (2009) Optimized production and analysis of the staphylococcal multidrug efflux protein QacA. Protein Expr Purif 64:118–124PubMedCrossRefGoogle Scholar
  63. 63.
    Romantsov T, Battle AR, Hendel JL, Martinac B, Wood JM (2010) Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J Bacteriol 192:912–924PubMedCrossRefGoogle Scholar
  64. 64.
    Nannenga BL, Baneyx F (2011) Reprogramming chaperone pathways to improve membrane protein expression in Escherichia coli. Protein Sci 20:1411–1420Google Scholar
  65. 65.
    Puertas JM, Nannenga BL, Dornfeld KT, Betton JM, Baneyx F (2010) Enhancing the secretory yields of leech carboxypeptidase inhibitor in Escherichia coli: influence of trigger factor and signal recognition particle. Protein Expr Purif 74:122–128PubMedCrossRefGoogle Scholar
  66. 66.
    Kramer G, Rauch T, Rist W, Vorderwulbecke S, Patzelt H, Schulze-Specking A, Ban N, Deuerling E, Bukau B (2002) L23 protein functions as a chaperone docking site on the ribosome. Nature 419:171–174PubMedCrossRefGoogle Scholar
  67. 67.
    Menetret JF, Schaletzky J, Clemons WM Jr, Osborne AR, Skanland SS, Denison C, Gygi SP, Kirkpatrick DS, Park E, Ludtke SJ, Rapoport TA, Akey CW (2007) Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol Cell 28:1083–1092PubMedCrossRefGoogle Scholar
  68. 68.
    Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA, Ban N (2011) The crystal structure of the signal recognition particle in complex with its receptor. Science (New York, NY) 331:881–886CrossRefGoogle Scholar
  69. 69.
    Palmeros B, Wild J, Szybalski W, Le Borgne S, Hernandez-Chavez G, Gosset G, Valle F, Bolivar F (2000) A family of removable cassettes designed to obtain antibiotic-resistance-free genomic modifications of Escherichia coli and other bacteria. Gene 247:255–264PubMedCrossRefGoogle Scholar
  70. 70.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645PubMedCrossRefGoogle Scholar
  71. 71.
    Baneyx F, Palumbo JL (2003) Improving heterologous protein folding via molecular chaperone and foldase co-expression. Methods Mol Biol 205:171–197PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations