Quantitative Methods in Proteomics pp 85-100

Part of the Methods in Molecular Biology book series (MIMB, volume 893)

Quantitative Mass Spectrometry-Based Proteomics: An Overview

Abstract

In recent years, mass spectrometry has moved more than ever before into the front line of protein-centered research. After being established at the qualitative level, the more challenging question of quantification of proteins and peptides using mass spectrometry has become a focus for further development. In this chapter, we discuss and review the strategies and problems of the methods currently in use for the quantitative analysis of peptides, proteins, and finally proteomes by mass spectrometry. The common themes, the differences, and the potential pitfalls of the main approaches are presented in order to provide a survey of the emerging field of quantitative, mass spectrometry-based proteomics.

Key words

Mass spectrometry Proteomics Absolute quantification Relative quantification Label-free Stable heavy isotope Isotope label 

References

  1. 1.
    Wilm M (2009) Quantitative proteomics in biological research. Proteomics 9(20):4590–605PubMedCrossRefGoogle Scholar
  2. 2.
    Mallick P, Kuster B (2010) Proteomics: a ­pragmatic perspective. Nat Biotechnol 28(7):695–709PubMedCrossRefGoogle Scholar
  3. 3.
    Graumann J, Hubner NC, Kim JB et al (2008) Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol Cell Proteomics 7(4):672–83PubMedGoogle Scholar
  4. 4.
    Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein ­mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–9PubMedCrossRefGoogle Scholar
  5. 5.
    Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1):4–15PubMedCrossRefGoogle Scholar
  6. 6.
    Boersema PJ, Aye TT, van Veen TA et al (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8(22):4624–32PubMedCrossRefGoogle Scholar
  7. 7.
    Hsu JL, Huang SY, Chow NH et al (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75(24):6843–52PubMedCrossRefGoogle Scholar
  8. 8.
    Kang UB, Yeom J, Kim H et al (2010) Quantitative analysis of mTRAQ-labeled proteome using full MS scans. J Proteome Res 9(7):3750–8PubMedCrossRefGoogle Scholar
  9. 9.
    DeSouza LV, Taylor AM, Li W et al (2008) Multiple reaction monitoring of ­mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. J Proteome Res 7(8):3525–34PubMedCrossRefGoogle Scholar
  10. 10.
    Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–69PubMedCrossRefGoogle Scholar
  11. 11.
    Thompson A, Schafer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–904PubMedCrossRefGoogle Scholar
  12. 12.
    Koehler CJ, Strozynski M, Kozielski F et al (2009) Isobaric peptide termini labeling for MS/MS-based quantitative proteomics. J Proteome Res 8(9):4333–41PubMedCrossRefGoogle Scholar
  13. 13.
    Oda Y, Huang K, Cross FR et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 96(12):6591–6PubMedCrossRefGoogle Scholar
  14. 14.
    Conrads TP, Alving K, Veenstra TD et al (2001) Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal Chem 73(9):2132–9PubMedCrossRefGoogle Scholar
  15. 15.
    Krijgsveld J, Ketting RF, Mahmoudi T et al (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21(8):927–31PubMedCrossRefGoogle Scholar
  16. 16.
    Nelson CJ, Huttin EL, Hegeman AD et al (2007) Implications of 15N-metabolic labeling for automated peptide identification in Arabidopsis thaliana. Proteomics 7(8):1279–92PubMedCrossRefGoogle Scholar
  17. 17.
    Wu CC, MacCoss MJ, Howell KE et al (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76(17):4951–9PubMedCrossRefGoogle Scholar
  18. 18.
    Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–62PubMedCrossRefGoogle Scholar
  19. 19.
    Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–86PubMedCrossRefGoogle Scholar
  20. 20.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–72PubMedCrossRefGoogle Scholar
  21. 21.
    de Godoy LM, Olsen JV, Cox J et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–4PubMedCrossRefGoogle Scholar
  22. 22.
    Oellerich T, Gronborg M, Neumann K et al (2009) SLP-65 phosphorylation dynamics reveals a functional basis for signal integration by receptor-proximal adaptor proteins. Mol Cell Proteomics 8(7):1738–50PubMedCrossRefGoogle Scholar
  23. 23.
    Nikolov M, Stuetzer A, Mosch K et al (2011) Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns. Mol Cell Proteomics 10(11):M110.005371PubMedCrossRefGoogle Scholar
  24. 24.
    Selbach M, Schwanhausser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63PubMedCrossRefGoogle Scholar
  25. 25.
    Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9(10):2173–83PubMedCrossRefGoogle Scholar
  26. 26.
    Kruger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134(2):353–64PubMedCrossRefGoogle Scholar
  27. 27.
    Van Hoof D, Pinkse MW, Oostwaard DW et al (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4(9):677–8PubMedCrossRefGoogle Scholar
  28. 28.
    Geiger T, Cox J, Ostasiewicz P et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7(5):383–5PubMedCrossRefGoogle Scholar
  29. 29.
    Desiderio DM, Kai M (1983) Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed Mass Spectrom 10(8):471–9PubMedCrossRefGoogle Scholar
  30. 30.
    Mirgorodskaya OA, Kozmin YP, Titov MI et al (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using [18]O-labeled internal standards. Rapid Commun Mass Spectrom 14(14):1226–32PubMedCrossRefGoogle Scholar
  31. 31.
    Schnolzer M, Jedrzejewski P, Lehmann WD (1996) Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 17(5):945–53PubMedCrossRefGoogle Scholar
  32. 32.
    Johnson KL, Muddiman DC (2004) A method for calculating 16O/18O peptide ion ratios for the relative quantification of proteomes. J Am Soc Mass Spectrom 15(4):437–45PubMedCrossRefGoogle Scholar
  33. 33.
    Voyksner RD, Lee H (1999) Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry. Rapid Commun Mass Spectrom 13(14):1427–37PubMedCrossRefGoogle Scholar
  34. 34.
    Wiener MC, Sachs JR, Deyanova EG et al (2004) Differential mass spectrometry: a ­label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 76(20):6085–96PubMedCrossRefGoogle Scholar
  35. 35.
    Liu H, Sadygov RG, Yates JR 3rd (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–201PubMedCrossRefGoogle Scholar
  36. 36.
    Zybailov B, Mosley AL, Sardiu ME et al (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5(9):2339–47PubMedCrossRefGoogle Scholar
  37. 37.
    Waanders LF, Hanke S, Mann M (2007) Top-down quantitation and characterization of SILAC-labeled proteins. J Am Soc Mass Spectrom 18(11):2058–64PubMedCrossRefGoogle Scholar
  38. 38.
    Gerber SA, Rush J, Stemman O et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100(12):6940–5PubMedCrossRefGoogle Scholar
  39. 39.
    Kirkpatrick DS, Gerber SA, Gygi SP (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35(3):265–73PubMedCrossRefGoogle Scholar
  40. 40.
    Schmidt C, Lenz C, Grote M et al (2010) Determination of protein stoichiometry within protein complexes using absolute quantification and multiple reaction monitoring. Anal Chem 82(7):2784–96PubMedCrossRefGoogle Scholar
  41. 41.
    Stahl-Zeng J, Lange V, Ossola R et al (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 6(10):1809–17PubMedCrossRefGoogle Scholar
  42. 42.
    Mallick P, Schirle M, Chen SS et al (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25(1):125–31PubMedCrossRefGoogle Scholar
  43. 43.
    Picotti P, Lam H, Campbell D et al (2008) A database of mass spectrometric assays for the yeast proteome. Nat Methods 5(11):913–4PubMedCrossRefGoogle Scholar
  44. 44.
    Picotti P, Rinner O, Stallmach R et al (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7(1):43–6PubMedCrossRefGoogle Scholar
  45. 45.
    Brun V, Dupuis A, Adrait A et al (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6(12):2139–49PubMedCrossRefGoogle Scholar
  46. 46.
    Hanke S, Besir H, Oesterhelt D et al (2008) Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J Proteome Res 7(3):1118–30PubMedCrossRefGoogle Scholar
  47. 47.
    Singh S, Springer M, Steen J et al (2009) FLEXIQuant: a novel tool for the absolute quantification of proteins, and the simultaneous identification and quantification of potentially modified peptides. J Proteome Res 8(5):2201–10PubMedCrossRefGoogle Scholar
  48. 48.
    Pratt JM, Simpson DM, Doherty MK et al (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1(2):1029–43PubMedCrossRefGoogle Scholar
  49. 49.
    Rappsilber J, Ryder U, Lamond AI et al (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12(8):1231–45PubMedCrossRefGoogle Scholar
  50. 50.
    Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9):1265–72PubMedCrossRefGoogle Scholar
  51. 51.
    Lu P, Vogel C, Wang R et al (2007) Absolute protein expression profiling estimates the ­relative contributions of transcriptional and translational regulation. Nat Biotechnol 25(1):117–24PubMedCrossRefGoogle Scholar
  52. 52.
    Silva JC, Gorenstein MV, Li GZ et al (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5(1):144–56PubMedGoogle Scholar
  53. 53.
    Zhang R, Sioma CS, Wang S et al (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73(21):5142–9PubMedCrossRefGoogle Scholar
  54. 54.
    Elliott MH, Smith DS, Parker CE et al (2009) Current trends in quantitative proteomics. J Mass Spectrom 44(12):1637–60PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Miroslav Nikolov
    • 1
  • Carla Schmidt
    • 1
  • Henning Urlaub
    • 2
  1. 1.Bioanalytical Mass Spectrometry GroupMax Planck Institute for Biophysical ChemistryGoettingenGermany
  2. 2.Bioanalytical Mass Spectrometry GroupMax Planck Institute for Biophysical ChemistryGöttingerGermany

Personalised recommendations