Advertisement

Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms

  • Andrzej Kilian
  • Peter Wenzl
  • Eric Huttner
  • Jason Carling
  • Ling Xia
  • Hélène Blois
  • Vanessa Caig
  • Katarzyna Heller-Uszynska
  • Damian Jaccoud
  • Colleen Hopper
  • Malgorzata Aschenbrenner-Kilian
  • Margaret Evers
  • Kaiman Peng
  • Cyril Cayla
  • Puthick Hok
  • Grzegorz Uszynski
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 888)

Abstract

In the last 20 years, we have observed an exponential growth of the DNA sequence data and simular increase in the volume of DNA polymorphism data generated by numerous molecular marker technologies. Most of the investment, and therefore progress, concentrated on human genome and genomes of selected model species. Diversity Arrays Technology (DArT), developed over a decade ago, was among the first “democratizing” genotyping technologies, as its performance was primarily driven by the level of DNA sequence variation in the species rather than by the level of financial investment. DArT also proved more robust to genome size and ploidy-level differences among approximately 60 organisms for which DArT was developed to date compared to other high-throughput genotyping technologies. The success of DArT in a number of organisms, including a wide range of “orphan crops,” can be attributed to the simplicity of underlying concepts: DArT combines genome complexity reduction methods enriching for genic regions with a highly parallel assay readout on a number of “open-access” microarray platforms. The quantitative nature of the assay enabled a number of applications in which allelic frequencies can be estimated from DArT arrays. A typical DArT assay tests for polymorphism tens of thousands of genomic loci with the final number of markers reported (hundreds to thousands) reflecting the level of DNA sequence variation in the tested loci. Detailed DArT methods, protocols, and a range of their application examples as well as DArT’s evolution path are presented.

Key words

DArT Molecular marker Complexity reduction Microarrays Diversity 

Notes

Acknowledgements

We gratefully acknowledge contributions from all our visitors (http://www.diversityarrays.com/visitors.html) and funding organizations (http://www.diversityarrays.com/investors.html).

References

  1. 1.
    Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  2. 2.
    Weber J, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  3. 3.
    Kilian A (2009) Case study 9: Diversity Arrays Technology Pty Ltd.: applying the open source philosophy in agriculture. In: Van Overwalle G (ed) Gene patents and collaborative licensing models: patent pools, clearinghouses, open source models and liability regimes. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Sansaloni CP, Petroli CD, Carling J et al (2010) A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Methods 6:16PubMedCrossRefGoogle Scholar
  5. 5.
    Steane DA, Nicolle D, Sansaloni CP et al (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 59:206–224PubMedCrossRefGoogle Scholar
  6. 6.
    Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25PubMedCrossRefGoogle Scholar
  7. 7.
    Rabinowicz PD, Schutz K, Dedhia N et al (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23:305–308PubMedCrossRefGoogle Scholar
  8. 8.
    Wenzl P, Carling J, Kudrna D et al (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920PubMedCrossRefGoogle Scholar
  9. 9.
    Xia L, Peng K, Yang S et al (2005) DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098PubMedCrossRefGoogle Scholar
  10. 10.
    Akbari M, Wenzl P, Caig V et al (2006) Diversity Arrays Technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  11. 11.
    Bonin A, Paris M, Després L et al (2008) A MITE-based genotyping method to reveal hundreds of DNA polymorphisms in an animal genome after a few generations of artificial selection. BMC Genomics 9:459PubMedCrossRefGoogle Scholar
  12. 12.
    Kilian A, Huttner E, Wenzl P et al (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress in the wake of the double helix: from the green revolution to the gene revolution, May 27–31 2003, Bologna, ItalyGoogle Scholar
  13. 13.
    Tinker NA, Kilian A, Wight CP et al (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39PubMedCrossRefGoogle Scholar
  14. 14.
    Wittenberg AHJ, van der Lee T, Cayla C et al (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30–39PubMedCrossRefGoogle Scholar
  15. 15.
    Zabarovsky ER, Petrenko L, Protopopov A et al (2003) Restriction site tagged (RST) microarrays: a novel technique to study the species composition of complex microbial systems. Nucleic Acids Res 31:e95PubMedCrossRefGoogle Scholar
  16. 16.
    Miller MR, Dunham JP, Amores A et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248PubMedCrossRefGoogle Scholar
  17. 17.
    Li TX, Wang J, Bai Y et al (2004) A novel method for screening species-specific gDNA probes for species identification. Nucleic Acids Res 32:e45PubMedCrossRefGoogle Scholar
  18. 18.
    Mace ES, Xia L, Jordan DR et al (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26PubMedCrossRefGoogle Scholar
  19. 19.
    Bolibok-Bragoszewska H, Heller-Uszyn´ska K, Wenzl P et al (2009) DArT markers for the rye genome–genetic diversity and mapping. BMC Genomics 10:578PubMedCrossRefGoogle Scholar
  20. 20.
    Wenzl P, Raman H, Wang J et al (2007) A DArT platform for quantitative bulked segregant analysis. BMC Genomics 8:196PubMedCrossRefGoogle Scholar
  21. 21.
    Paux E, Sourdille P, Salse J et al (2008) A physical map of the 1-Gigabase bread wheat chromosome 3B. Science 322:101–104PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Andrzej Kilian
    • 1
  • Peter Wenzl
    • 1
  • Eric Huttner
    • 1
  • Jason Carling
    • 1
  • Ling Xia
    • 1
  • Hélène Blois
    • 1
  • Vanessa Caig
    • 1
  • Katarzyna Heller-Uszynska
    • 1
  • Damian Jaccoud
    • 1
  • Colleen Hopper
    • 1
  • Malgorzata Aschenbrenner-Kilian
    • 1
  • Margaret Evers
    • 1
  • Kaiman Peng
    • 1
  • Cyril Cayla
    • 1
  • Puthick Hok
    • 1
  • Grzegorz Uszynski
    • 1
  1. 1.Diversity Arrays Technology Pty LtdCanberraAustralia

Personalised recommendations