Advertisement

Analysis and Management of Gene and Allelic Diversity in Subdivided Populations Using the Software Program METAPOP

  • Andrés Pérez-Figueroa
  • Silvia T. Rodríguez-Ramilo
  • Armando Caballero
Part of the Methods in Molecular Biology book series (MIMB, volume 888)

Abstract

METAPOP (http://webs.uvigo.es/anpefi/metapop/) is a desktop application that provides an analysis of gene and allelic diversity in subdivided populations from molecular genotype or coancestry data as well as a tool for the management of genetic diversity in conservation programs. A partition of gene and allelic diversity is made within and between subpopulations, in order to assess the contribution of each subpopulation to global diversity for descriptive population genetics or conservation purposes. In the context of management of subdivided populations in in situ conservation programs, the software also determines the optimal contributions (i.e., number of offspring) of each individual, the number of migrants, and the particular subpopulations involved in the exchange of individuals in order to maintain the largest level of gene diversity in the whole population with a desired control in the rate of inbreeding. The partition of gene and allelic diversity within and between subpopulations is illustrated with microsatellite and SNP data from human populations.

Key words

Inbreeding Genetic drift Migration Population differentiation 

Notes

Acknowledgments

We thank Miguel Toro and Jesús Fernández for helpful discussions. This work was funded by the Ministerio de Ciencia e Innovación and Fondos Feder (CGL2009-13278-C02), and a grant for Consolidación e estruturación de unidades de investigación competitivas do sistema universitario de Galicia, Consellería de Educación e Ordenación Universitaria, Xunta de Galicia.

References

  1. 1.
    Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Malden, MAGoogle Scholar
  3. 3.
    Pérez-Figueroa A, Saura M, Fernández J, Toro MA, Caballero A (2009) METAPOP – a software for the management and analysis of subdivided populations in conservation programs. Conserv Genet 10:1097–1099CrossRefGoogle Scholar
  4. 4.
    Caballero A, Toro MA (2002) Analysis of genetic diversity for the management of conserved subdivided populations. Conserv Genet 3:289–299CrossRefGoogle Scholar
  5. 5.
    Caballero A, Rodríguez-Ramilo ST (2010) A new method for the partition of allelic differentiation within and between subpopulations and its application in conservation. Conserv Genet 11:2219–2229. doi:10.1007/s10592-010-0107-7Google Scholar
  6. 6.
    Fernández J, Toro MA, Caballero A (2008) Management of subdivided populations in conservation programs: development of a novel dynamic system. Genetics 179:683–692PubMedCrossRefGoogle Scholar
  7. 7.
    Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  8. 8.
    Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190CrossRefGoogle Scholar
  9. 9.
    Luikart G, Allendorf F, Cornuet JM, Sherwin W (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  10. 10.
    Santiago E, Caballero A (1998) Effective size and polymorphism of linked neutral loci in populations under selection. Genetics 149:2105–2117PubMedGoogle Scholar
  11. 11.
    Wright S (1969) Evolution and the genetics of populations. The theory of gene frequencies, vol 2. University of Chicago Press, ChicagoGoogle Scholar
  12. 12.
    Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  13. 13.
    Foulley JL, Ollivier L (2006) Estimating allelic richness and its diversity. Livest Sci 101:150–158CrossRefGoogle Scholar
  14. 14.
    Toro MA, Fernández J, Caballero A (2009) Molecular characterization of breeds and its use in conservation. Livest Sci 120: 174–195CrossRefGoogle Scholar
  15. 15.
    Eding H, Crooijmans PMA, Groenne MAM, Meuwissen THE (2002) Assessing the contribution of breeds to genetic diversity in conservation schemes. Genet Sel Evol 34:613–633PubMedCrossRefGoogle Scholar
  16. 16.
    Ollivier L, Foulley JL (2005) Aggregate diversity: new approach combining within- and between-breed genetic diversity. Liv Prod Sci 95:247–254CrossRefGoogle Scholar
  17. 17.
    Ballou J, Lacy R (1995) Identifying genetically important individuals for management of genetic variation in pedigreed populations. In: Ballou JD, Gilpin M, Foose TJ (eds) Population management for survival and recovery. Columbia University Press, New York, pp 76–111Google Scholar
  18. 18.
    Meuwissen THE (2007) Operation of conservation schemes. In: Oldenbroek K (ed) Utilisation and conservation of farm animal genetic resources. Wageningen Academic Publishers, Wageningen, The Netherlands, pp 167–193Google Scholar
  19. 19.
    Fernández J, Toro MA, Caballero A (2001) Practical implementations of optimal management strategies in conservation programmes: a mate selection method. Anim Biodivers Conserv 24:17–24Google Scholar
  20. 20.
    Ávila V, Fernández J, Quesada H, Caballero A (2010) An experimental evaluation with Drosophila melanogaster of a novel dynamic system for the management of subdivided populations in conservation programs. Heredity 106: 765–774Google Scholar
  21. 21.
    El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefGoogle Scholar
  22. 22.
    Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680PubMedCrossRefGoogle Scholar
  23. 23.
    Rosenberg NA, Pritchard JK, Weber JL et al (2002) Genetic structure of human populations. Science 298:2381–2385PubMedCrossRefGoogle Scholar
  24. 24.
    Conrad DF, Jakobsson M, Coop G et al (2006) A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nature Genet 38:1251–1260PubMedCrossRefGoogle Scholar
  25. 25.
    Handley LJ, Manica A, Goudet J, Balloux F (2007) Going the distance: human population genetics in a clinal world. Trends Genet 23:432–439PubMedCrossRefGoogle Scholar
  26. 26.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical recipes. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Andrés Pérez-Figueroa
    • 1
  • Silvia T. Rodríguez-Ramilo
    • 2
  • Armando Caballero
    • 2
  1. 1.Facultad de Biología, Departamento de Bioquímica, Genética e Inmunología Facultad de BiologíaUniversidad de VigoVigoSpain
  2. 2.Departamento de Bioquímica, Genética e Inmunología Facultad de BiologíaUniversidad de VigoVigoSpain

Personalised recommendations