Advertisement

Sampling in Landscape Genomics

  • Stéphanie Manel
  • Cécile H. Albert
  • Nigel G. Yoccoz
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 888)

Abstract

Landscape genomics, based on the sampling of individuals genotyped for a large number of markers, may lead to the identification of regions of the genome correlated to selection pressures caused by the environment. In this chapter, we discuss sampling strategies to be used in a landscape genomics approach. We suggest that designs based on model-based stratification using the climatic and/or biological spaces are in general more efficient than designs based on the geographic space. More work is needed to identify designs that allow disentangling environmental selection pressures versus other processes such as range expansions or hierarchical population structure.

Key words

Landscape genomics Sampling Population genetics Genetic adaptive diversity 

References

  1. 1.
    Stinchcombe JR, Hoekstra HE (2008) Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity 100:158–170PubMedCrossRefGoogle Scholar
  2. 2.
    Joost S, Bonin A, Bruford MW et al (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969PubMedCrossRefGoogle Scholar
  3. 3.
    Luikart G, England PR, Tallmon D et al (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994PubMedCrossRefGoogle Scholar
  4. 4.
    Muirhead JR, Gray DK, Kelly DW et al (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:1020–1035PubMedCrossRefGoogle Scholar
  5. 5.
    Storfer A, Murphy MA, Evans JS et al (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142PubMedCrossRefGoogle Scholar
  6. 6.
    Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452CrossRefGoogle Scholar
  7. 7.
    Ehrich D, Yoccoz NG, Ims RA (2009) Multi-annual density fluctuations and habitat size enhance genetic variability in two northern voles. Oikos 118:1441–1452CrossRefGoogle Scholar
  8. 8.
    Epperson BK, McRae B, Scribner K et al (2010) Utility of computer simulations in landscape genetics. Mol Ecol 19:3549–3564PubMedCrossRefGoogle Scholar
  9. 9.
    Poncet B, Herrmann D, Gugerli F et al (2010) Tracking genes of ecological relevance using a genome scan: application to Arabis alpina. Mol Ecol 19:2896–2907PubMedCrossRefGoogle Scholar
  10. 10.
    Turner JRG (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nat Genet 42:260–263. doi:10.38/ng.515Google Scholar
  11. 11.
    Cushman SA, Landguth E (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:4179–4191CrossRefGoogle Scholar
  12. 12.
    Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic, San DiegoGoogle Scholar
  13. 13.
    Little RJ (2004) To model or not to model? Competing modes of inference for finite population sampling. J Am Stat Assoc 99:546–556CrossRefGoogle Scholar
  14. 14.
    Albert C, Yoccoz N, Edwards T et al (2010) Sampling in ecology and evolution – bridging the gap between theory and practice. Ecography 33:1028–1037CrossRefGoogle Scholar
  15. 15.
    Box G, Hunter W, Hunter J (2005) Statistics for experimenters. Design, innovation, and discovery, 2nd edn. Wiley, HobokenGoogle Scholar
  16. 16.
    Inouye BD (2001) Response surface experimental designs for investigating interspecific competition. Ecology 82:2696–2706CrossRefGoogle Scholar
  17. 17.
    Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Ann Rev Ecol Evol S40:481–501CrossRefGoogle Scholar
  18. 18.
    Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298PubMedCrossRefGoogle Scholar
  19. 19.
    Bradbury PJ, Zhang Z, Kroon DE et al (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedCrossRefGoogle Scholar
  20. 20.
    Yu JM, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  21. 21.
    Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:145–159CrossRefGoogle Scholar
  22. 22.
    Diniz-Filho JAF, Nabout JC, Telles MPD et al (2009) A review of techniques for spatial modeling in geographical, conservation and landscape genetics. Genet Mol Biol 32:203–211PubMedCrossRefGoogle Scholar
  23. 23.
    Manel S, Joost S, Epperson B et al (2010) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol 19:3760–3772PubMedCrossRefGoogle Scholar
  24. 24.
    Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68CrossRefGoogle Scholar
  25. 25.
    Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  26. 26.
    Dengler J, Oldeland J (2010) Effects of sampling protocol on the shapes of species richness curves. J Biogeogr 37:1698–1705CrossRefGoogle Scholar
  27. 27.
    Brito JC, Crespo EG, Paulo OS (1999) Modelling wildlife distributions: logistic multiple regression vs overlap analysis. Ecography 22:251–260CrossRefGoogle Scholar
  28. 28.
    Singh NJ, Yoccoz NG, Bhatnagar YV, Fox JL (2009) Using habitat suitability models to sample rare species in high-altitude ecosystems: a case study with Tibetan argali. Biodivers Conserv 18:2893–2908CrossRefGoogle Scholar
  29. 29.
    Guisan A, Broennimann O, Engler R et al (2006) Using niche-based models to improve the sampling of rare species. Conserv Biol 20:501–511PubMedCrossRefGoogle Scholar
  30. 30.
    Bridle JR, Polechova J, Kawata M, Butlin RK (2010) Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett 13:485–494PubMedCrossRefGoogle Scholar
  31. 31.
    Kawecki TJ (2008) Adaptation to marginal habitats. Ann Rev Ecol Evol S39:321–342CrossRefGoogle Scholar
  32. 32.
    Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393PubMedCrossRefGoogle Scholar
  33. 33.
    Storey JD, Tibshirani R (2003) Statistical significance for genome wide studies. Proc Natl Acad Sci USA 100:9440–9445PubMedCrossRefGoogle Scholar
  34. 34.
    Manel S, Poncet B, Legendre P et al (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Stéphanie Manel
    • 1
    • 2
  • Cécile H. Albert
    • 2
    • 3
  • Nigel G. Yoccoz
    • 4
  1. 1.Laboratoire Population Environnement DéveloppementUMR 151 UP/IRD, Université Aix-MarseilleMarseilleFrance
  2. 2.Laboratoire d’Ecologie AlpineUMR CNRS 5553, Université Joseph FourierGrenobleFrance
  3. 3.Department of BiologyMcGill UniversityMontrealCanada
  4. 4.Fishers and Economics, Department of Arctic and Marine Biology, Faculty of BiosciencesUniversity of TromsøTromsøNorway

Personalised recommendations