Developmental Toxicology pp 15-24

Part of the Methods in Molecular Biology book series (MIMB, volume 889)

Caenorhabditis elegans as a Model in Developmental Toxicology

  • Windy A. Boyd
  • Marjolein V. Smith
  • Jonathan H. Freedman


A number of practical advantages have made the nematode Caenorhabditis elegans a useful model for genetic and developmental biological research. These same advantages, along with conservation of disease and stress response pathways, availability of mutant and transgenic strains, and wealth of biological information, have led to the increased use of C. elegans in toxicological studies. Although the potential to study the mechanisms of developmental toxicology in C. elegans is promising, embryonic and larval growth tests to identify compounds that affect the nematode have remained the primary use of C. elegans in developmental toxicology. Here, we describe a C. elegans larval growth and development assay for medium- and high-throughput screening using the COPAS Biosort flow cytometer and provide descriptions of the data and subsequent analysis.

Key words

C. elegans High-throughput screen Growth and development COPAS Biosort Developmental toxicity 


  1. 1.
    Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of nematode, Caenorhabditis elegans. Dev Biol 56:110–156PubMedCrossRefGoogle Scholar
  2. 2.
    Hope IA (1999) C. elegans: a practical approach. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedGoogle Scholar
  4. 4.
    Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  5. 5.
    Wood WB (1988) The nematode Caenor­habditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  6. 6.
    Strange K (2006) C. elegans: methods and applications. Humana, Totowa, NJGoogle Scholar
  7. 7.
  8. 8.
    Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28PubMedCrossRefGoogle Scholar
  9. 9.
    Helmcke KJ, Avila DS, Aschner M (2010) Utility of Caenorhabditis elegans in high throughput neurotoxicological research. Neurotoxicol Teratol 32:62–67PubMedCrossRefGoogle Scholar
  10. 10.
    Boyd WA, Smith MV, Kissling GE, Freedman JH (2010) Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol Teratol 32:68–73PubMedCrossRefGoogle Scholar
  11. 11.
    Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH (2010) A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol 245:153–159PubMedCrossRefGoogle Scholar
  12. 12.
    Boyd WA, McBride SJ, Freedman JH (2007) Effects of genetic mutations and chemical exposures on Caenorhabditis elegans feeding: evaluation of a novel, high-throughput screening assay. PLoS One 2:e1259PubMedCrossRefGoogle Scholar
  13. 13.
    Allard P, Colaiacovo MP (2010) Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci USA 107:20405–20410PubMedCrossRefGoogle Scholar
  14. 14.
    Leung MC, Goldstone JV, Boyd WA, Freedman JH, Meyer JN (2010) Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin b-1 but not benzo[a]pyrene in vivo. Toxicol Sci 118:444–453PubMedCrossRefGoogle Scholar
  15. 15.
    Swain S, Wren JF, Stuerzenbaum SR, Kille P, Morgan AJ, Jager T, Jonker MJ, Hankard PK, Svendsen C, Owen J, Hedley BA, Blaxter M, Spurgeon DJ (2010) Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans. BMC Syst Biol 4:32PubMedCrossRefGoogle Scholar
  16. 16.
    Wren JF, Kille P, Spurgeon DJ, Swain S, Sturzenbaum SR, Jager T (2011) Application of physiologically based modelling and transcriptomics to probe the systems toxicology of aldicarb for Caenorhabditis elegans (Maupas 1900). Ecotoxicology 20:397–408PubMedCrossRefGoogle Scholar
  17. 17.
    Hood RD (2006) Developmental and reproductive toxicology: a practical approach. CRC, Boca Raton, FLGoogle Scholar
  18. 18.
    Brandt R, Gergou A, Wacker I, Fath T, Hutter H (2009) A Caenorhabditis elegans model of tau hyperphosphorylation: induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiol Aging 30:22–33PubMedCrossRefGoogle Scholar
  19. 19.
    VanDuyn N, Settivari R, Wong G, Nass R (2010) SKN-1/NRF2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicol Sci 118:613–624PubMedCrossRefGoogle Scholar
  20. 20.
    Boyd WA, Smith MV, Kissling GE, Rice JR, Snyder DW, Portier CJ, Freedman JH (2009) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS One 4:e7024PubMedCrossRefGoogle Scholar
  21. 21.
    Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, Chilkoti A, Wiesner MR, Auffan M (2010) Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150PubMedCrossRefGoogle Scholar
  22. 22.
    Smith MV, Boyd WA, Kissling GE, Rice JR, Snyder DW, Portier CJ, Freedman JH (2009) A discrete time model for the analysis of medium-throughput C. elegans growth data. PLoS One 4:e7018PubMedCrossRefGoogle Scholar
  23. 23.
    Lewis JA, Fleming JT (1995) Basic culture methods. In: Epstein HF, Shakes DC (eds) Caenorhabditis elegans: modern biological analysis of an organism. Academic, San Diego, CA, pp 3–29CrossRefGoogle Scholar
  24. 24.
    Pulak R (2006) Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol Biol 351:275–286PubMedGoogle Scholar
  25. 25.
  26. 26.
    Boyd WA, Crocker TL, Rodriguez AM, Leung MC, Lehmann DW, Freedman JH, Van Houten B, Meyer JN (2010) Nucleotide excision repair genes are expressed at low levels and are not detectably inducible in Caenorhabditis elegans somatic tissues, but their function is required for normal adult life after UVC exposure. Mutat Res 683:57–67PubMedCrossRefGoogle Scholar
  27. 27.
    Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118:485–492PubMedCrossRefGoogle Scholar
  28. 28.
    Knudsen TB, Houck KA, Sipes N, Singh AV, Judson R, Martin MT, Weissman A, Kleinstreuer N, Mortensen HM, Reif D, Rabinowitz JR, Setzer RW, Richard AM, Dix DJ, Kavlock RJ (2011) Activity profiles of 309 ToxCast chemicals evaluated across 292 biochemical targets. Toxicology 282:1–15PubMedCrossRefGoogle Scholar
  29. 29.
    Collins FS, Gray GM, Bucher JR (2008) Toxicology—Transforming environmental health protection. Science 319:906–907PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Windy A. Boyd
    • 1
  • Marjolein V. Smith
    • 2
  • Jonathan H. Freedman
    • 1
    • 3
  1. 1.Biomolecular Screening Branch, National Toxicology ProgramNational Institute of Environmental Health Sciences, NIHResearch Triangle ParkUSA
  2. 2.SRA InternationalDurhamUSA
  3. 3.Laboratory of Toxicology and PharmacologyNational Institute of Environmental Health Sciences, NIHResearch Triangle ParkUSA

Personalised recommendations