Advertisement

In Vivo Models of Developmental Toxicology

  • Jason M. Hansen
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 889)

Abstract

The founding principles of teratology/developmental toxicology state that a developmental toxicants cause dysmorphogenesis when conceptuses are exposed at a sufficient dosage during a sensitive period of development in a sensitive species. While in vitro approaches in developmental toxicology can provide a means to assess the potency of toxicants, ultimately, the need to use whole animal models to demonstrate embryotoxicity is necessary to fully extrapolate findings to the human condition. This chapter is dedicated to reviewing the advantages of specific animal models and how these animal models may be used to assess toxicity in the embryo, both descriptively and mechanistically.

Key words

Principles of teratology In vivo Animal models Caenorhabditis elegans Drosophila melanogaster Danio rerio Mouse 

References

  1. 1.
    Wilson JG (1973) Environment and birth defects. Environmental sciences. Academic, New York, NYGoogle Scholar
  2. 2.
    National Research Council (U.S.). Committee on Developmental Toxicology., National Research Council (U.S.). Commission on Life Sciences (2000) Scientific frontiers in developmental toxicology and risk assessment. National Academy Press, Washington, DCGoogle Scholar
  3. 3.
    Sulston JE (1983) Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 48(Pt 2):443–452PubMedCrossRefGoogle Scholar
  4. 4.
    Sulston JE, Schierenberg E, White JG et al (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119PubMedCrossRefGoogle Scholar
  5. 5.
    Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–416PubMedCrossRefGoogle Scholar
  6. 6.
    C. elegans Sequence Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018CrossRefGoogle Scholar
  7. 7.
    Mello CC, Kramer JM, Stinchcomb D et al (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970PubMedGoogle Scholar
  8. 8.
    Hashmi S, Britton C, Liu J et al (2002) Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. J Biol Chem 277:3477–3486PubMedCrossRefGoogle Scholar
  9. 9.
    Robertson SM, Shetty P, Lin R (2004) Identification of lineage-specific zygotic transcripts in early Caenorhabditis elegans embryos. Dev Biol 276:493–507PubMedCrossRefGoogle Scholar
  10. 10.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  11. 11.
    Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829PubMedCrossRefGoogle Scholar
  12. 12.
    Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  13. 13.
    Mellerick DM, Liu H (2004) Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS. J Neurobiol 60:308–318PubMedCrossRefGoogle Scholar
  14. 14.
    Geisler R, Rauch GJ, Baier H et al (1999) A radiation hybrid map of the zebrafish genome. Nat Genet 23:86–89PubMedCrossRefGoogle Scholar
  15. 15.
    Woods IG, Kelly PD, Chu F et al (2000) A comparative map of the zebrafish genome. Genome Res 10:1903–1914PubMedCrossRefGoogle Scholar
  16. 16.
    Ali S, van Mil HG, Richardson MK (2011) Large-scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS One 6:e21076PubMedCrossRefGoogle Scholar
  17. 17.
    Giles S, Boehm P, Brogan C et al (2008) The effects of ethanol on CNS development in the chick embryo. Reprod Toxicol 25:224–230PubMedCrossRefGoogle Scholar
  18. 18.
    Rovasio RA, Battiato NL (1995) Role of early migratory neural crest cells in developmental anomalies induced by ethanol. Int J Dev Biol 39:421–422PubMedGoogle Scholar
  19. 19.
    Rovasio RA, Battiato NL (2002) Ethanol induces morphological and dynamic changes on in vivo and in vitro neural crest cells. Alcohol Clin Exp Res 26:1286–1298PubMedCrossRefGoogle Scholar
  20. 20.
    Johnson CW, Hernandez-Lagunas L, Feng W et al (2011) Vgll2a is required for neural crest cell survival during zebrafish craniofacial development. Dev Biol 357(1):269–281PubMedCrossRefGoogle Scholar
  21. 21.
    Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562PubMedCrossRefGoogle Scholar
  22. 22.
    Fabro S, Smith RL, Williams RT (1965) Thalidomide as a possible biological acylating agent. Nature 208:1208–1209PubMedCrossRefGoogle Scholar
  23. 23.
    Schardein JL (2000) Chemically induced birth defects, 3rd edn. Marcel Dekker, New York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PediatricsEmory UniversityAtlantaUSA

Personalised recommendations