Deoxyoligonucleotide Microarrays for Gene Expression Profiling in Murine Tooth Germs

  • Harald OsmundsenEmail author
  • Anne-Marthe Jevnaker
  • Maria A. Landin
Part of the Methods in Molecular Biology book series (MIMB, volume 887)


The use of deoxyoligonucleotide microarrays facilitates rapid expression profiling of gene expression using samples of about 1 μg of total RNA. Here are described practical aspects of the procedures involved, including essential reagents. Analysis of results is discussed from a practical, experimental, point of view together with software required to carry out the required statistical analysis to isolate populations of differentially expressed genes.

Key words

mRNA Transcriptome Hybridization Fluorescence Cy3 Cy5 MA-plot Clustering .gal-file 



The expert technical assistance of Mrs. Toril Woldene, Mrs. Bente Gehrken, and Mr. Benedicto Geronimo are gratefully acknowledged.


  1. 1.
    Osmundsen, H., Landin, M. A., From, S. H., Kolltveit, K. M., and Risnes, S. (2007) Changes in gene-expression during development of the murine molar tooth germ, Arch Oral Biol 52, 803–813.PubMedCrossRefGoogle Scholar
  2. 2.
    Sehic, A., Khuu, C., Risnes, S., and Osmundsen, H. (2009) Differential gene expression profiling of the molar tooth germ in peroxisome proliferator-activated receptor-alpha (PPAR-alpha) knockout mouse and in wild-type mouse: molar tooth phenotype of PPAR-alpha knockout mouse, Eur J Oral Sci 117, 93–104.PubMedCrossRefGoogle Scholar
  3. 3.
    Sehic, A., Risnes, S., Khan, Q. E., Khuu, C., and Osmundsen, H. (2010) Gene expression and dental enamel structure in developing mouse incisor, Eur J Oral Sci 118, 118–130.PubMedCrossRefGoogle Scholar
  4. 4.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, 467–470.PubMedCrossRefGoogle Scholar
  5. 5.
    Watson, A., Mazumder, A., Stewart, M., and Balasubramanian, S. (1998) Technology for microarray analysis of gene expression, Curr Opin Biotechnol 9, 609–614.PubMedCrossRefGoogle Scholar
  6. 6.
    Elvidge, G. (2006) Microarray expression technology: from start to finish, Pharmacogenomics 7, 123–134.PubMedCrossRefGoogle Scholar
  7. 7.
    Mocellin, S., and Rossi, C. R. (2007) Principles of gene microarray data analysis, Adv Exp Med Biol 593, 19–30.PubMedCrossRefGoogle Scholar
  8. 8.
    Roberts, P. C. (2008) Gene expression microarray data analysis demystified, Biotechnol Annu Rev 14, 29–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf, B., Lesnaw, J. A., and Reichmann, M. E. (1970) A mechanism of the irreversible ­inactivation of bovine pancreatic ribonuclease by diethylpyrocarbonate. A general reaction of diethylpyrocarbonate. A general reaction of diethylpyrocarbonate with proteins, Eur J Biochem 13, 519–525.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu, H., Bebu, I., and Li, X. (2010) Microarray probes and probe sets, Front Biosci (Elite Ed) 2, 325–338.CrossRefGoogle Scholar
  11. 11.
    Yang, I. V. (2006) Use of external controls in microarray experiments, Methods Enzymol 411, 50–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., and Speed, T. P. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Res 30, e15.PubMedCrossRefGoogle Scholar
  13. 13.
    Churchill, G. A. (2004) Using ANOVA to analyze microarray data, Biotechniques 37, 173–175, 177.Google Scholar
  14. 14.
    Stekel, D. (2003) Microarray Bioinformatics, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  15. 15.
    Benjamini, Y., Hochberg Y. (1995) Controlling the false discovery rate; a practical and powerful apporach to multiple testing., J. R. Stat Soc B 57, 589–300.Google Scholar
  16. 16.
    Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A., and Ploner, A. (2005) False discovery rate, sensitivity and sample size for microarray studies, Bioinformatics 21, 3017–3024.PubMedCrossRefGoogle Scholar
  17. 17.
    Pfaffl, M. W., Horgan, G. W., and Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res 30, e36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Harald Osmundsen
    • 1
    Email author
  • Anne-Marthe Jevnaker
    • 1
  • Maria A. Landin
    • 1
  1. 1.Department of Oral BiologyUniversity of OsloOsloNorway

Personalised recommendations