Advertisement

Access and Use of the GUDMAP Database of Genitourinary Development

  • Jamie A. DaviesEmail author
  • Melissa H. Little
  • Bruce Aronow
  • Jane Armstrong
  • Jane Brennan
  • Sue Lloyd-MacGilp
  • Chris Armit
  • Simon Harding
  • Xinjun Piu
  • Yogmatee Roochun
  • Bernard Haggarty
  • Derek Houghton
  • Duncan Davidson
  • Richard Baldock
Part of the Methods in Molecular Biology™ book series (MIMB, volume 886)

Abstract

The Genitourinary Development Molecular Atlas Project (GUDMAP) aims to document gene expression across time and space in the developing urogenital system of the mouse, and to provide access to a variety of relevant practical and educational resources. Data come from microarray gene expression profiling (from laser-dissected and FACS-sorted samples) and in situ hybridization at both low (whole-mount) and high (section) resolutions. Data are annotated to a published, high-resolution anatomical ontology and can be accessed using a variety of search interfaces. Here, we explain how to run typical queries on the database, by gene or anatomical location, how to view data, how to perform complex queries, and how to submit data.

Key words

Organogenesis Renal Kidney Metanephros Mesonephros Wolffian Nephric Ureter Bladder Testis Prostate Seminal vesicle Ovary Oviduct Uterus Cervix Vagina Vulva Phallus Urethra Penis Clitoris Development Bioinformatics Atlas 

Notes

Acknowledgements

The GUDMAP database is funded by the National Institute of Digestion, Diabetes, and Kidney Disease (NIDDK), NIH, and the National Institute of Child Health and Human Development.

References

  1. 1.
    Little MH, Brennan J, Georgas K et al (2007) A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr Patterns 7(6):680–699PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Baldock RA, Bard JB, Burger A et al (2003) EMAP and EMAGE: a framework for understanding spatially organized data. Neuroinformatics 1:309–325PubMedCrossRefGoogle Scholar
  3. 3.
    Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371PubMedCrossRefGoogle Scholar
  4. 4.
    Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Deutsch EW, Ball CA, Berman JJ et al (2008) Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). Nat Biotechnol 26:305–312PubMedCrossRefGoogle Scholar
  6. 6.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333:312–323PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Georgas K, Rumballe B, Wilkinson L et al (2008) Use of dual section mRNA in situ hybridisation/immunohistochemistry to clarify gene expression patterns during the early stages of nephron development in the embryo and in the mature nephron of the adult mouse kidney. Histochem Cell Biol 130:927–942PubMedCrossRefGoogle Scholar
  9. 9.
    Brunskill EW, Aronow BJ, Georgas K et al (2008) Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 15:781–791PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Georgas K, Rumballe B, Valerius MT et al (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332:273–286PubMedCrossRefGoogle Scholar
  11. 11.
    Georgas KM, Chiu HS, Lesieur E, Rumballe BA, Little MH (2011) Expression of metanephric nephron-patterning genes in differentiating mesonephric tubules. Dev Dyn 240:1600–1612PubMedCrossRefGoogle Scholar
  12. 12.
    Thiagarajan RD, Georgas KM, Rumballe BA et al (2011) Identification of anchor genes during kidney development defines ontological relationships, molecular subcompartments and regulatory pathways. PLoS One 6:e17286PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Chiu HS, Szucsik JC, Georgas KM et al (2010) Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation. Dev Biol 344:1071–1087PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Rolland AD, Lehmann KP, Johnson KJ, Gaido KW, Koopman P (2011) Uncovering gene regulatory networks during mouse fetal germ cell development. Biol Reprod 84:790–800PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jamie A. Davies
    • 1
    Email author
  • Melissa H. Little
    • 2
  • Bruce Aronow
    • 3
  • Jane Armstrong
    • 1
  • Jane Brennan
    • 1
  • Sue Lloyd-MacGilp
    • 1
  • Chris Armit
    • 4
  • Simon Harding
    • 4
  • Xinjun Piu
    • 4
  • Yogmatee Roochun
    • 4
  • Bernard Haggarty
    • 4
  • Derek Houghton
    • 4
  • Duncan Davidson
    • 4
  • Richard Baldock
    • 4
  1. 1.University of EdinburghEdinburghUK
  2. 2.Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
  3. 3.Computational Medicine CentreCincinnati Children’s HospitalCincinnatiUSA
  4. 4.MRC Human Genetics UnitWestern General HospitalEdinburghUK

Personalised recommendations