Advertisement

Retinal Transcriptome Profiling by Directional Next-Generation Sequencing Using 100 ng of Total RNA

  • Matthew J. Brooks
  • Harsha Karur Rajasimha
  • Anand SwaroopEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 884)

Abstract

RNA expression profiles produced by next-generation sequencing (NGS) technology (RNA-seq) allow comprehensive investigation of transcribed sequences within a cell or tissue. RNA-seq is rapidly becoming more cost-effective for transcriptome profiling. However, its usage will expand dramatically if one starts with low amount of RNA and obtains transcript directionality during the analysis. Here, we describe a detailed protocol for the creation of a directional RNA-seq library from 100 ng of starting total RNA.

Key words

RNA Sequencing Next-generation Sequencing Massively Parallel Sequencing Directional RNA-seq Low input RNA 

Notes

Acknowledgment

The authors are supported by Intramural Research Program of the National Eye Institute, National Institutes of Health, Bethesda, MD, USA.

References

  1. 1.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedCrossRefGoogle Scholar
  2. 2.
    Bradford JR, Hey Y, Yates T, Li Y, Pepper SD, Miller CJ (2010) A comparison of massively parallel nucleotide sequencing with oligonucleotide microarrays for global transcription profiling. BMC Genomics 11:282PubMedCrossRefGoogle Scholar
  3. 3.
    Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243PubMedCrossRefGoogle Scholar
  4. 4.
    Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515PubMedCrossRefGoogle Scholar
  5. 5.
    Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe LC, Dahmane N, Davuluri RV (2011) Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of cerebellar development. Genome Res 21:1260–1272PubMedCrossRefGoogle Scholar
  6. 6.
    Brooks MJ, Rajasimha HK, Roger JE, Swaroop A (2011) Next generation sequencing facilitates quantitative analysis of wild type and Nrl−/− retinal transcriptomes. Mol Vis 17:3034–3054. Epub 2011 Nov 23Google Scholar
  7. 7.
    Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715PubMedCrossRefGoogle Scholar
  8. 8.
    Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37:e123PubMedCrossRefGoogle Scholar
  9. 9.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760PubMedCrossRefGoogle Scholar
  10. 10.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCrossRefGoogle Scholar
  11. 11.
    Cox AJ (2007) ELAND: efficient large-scale alignment of nucleiotide databases. Illumina, San Diego, CAGoogle Scholar
  12. 12.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111PubMedCrossRefGoogle Scholar
  13. 13.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079PubMedCrossRefGoogle Scholar
  14. 14.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  15. 15.
    Saldanha AJ (2004) Java Treeview – extensible visualization of microarray data. Bioinformatics 20:3246–3248PubMedCrossRefGoogle Scholar
  16. 16.
    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26PubMedCrossRefGoogle Scholar
  17. 17.
    Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ. (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39(Database Issue):D876–D882.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Matthew J. Brooks
    • 1
  • Harsha Karur Rajasimha
    • 1
  • Anand Swaroop
    • 1
    Email author
  1. 1.Neurobiology Neurodegeneration and Repair LaboratoryNational Eye Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations