Conditional Control of Gene Expression in the Mouse Retina

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 884)

Abstract

Conditional knockout is a powerful research tool for specific deletion of target genes, especially for the genes that are widely expressed and developmentally regulated. The development of the retina involves multiple intrinsic and extrinsic factors, many are required for embryonic development or expressed in multiple tissue or cell types. To study their roles in a spatial- or temporal-specific fashion, Cre/loxP-based gene-targeting approach has been utilized successfully. This chapter describes the methodology of conditional knockout approach in studying the development of the retina, using LIM homeobox gene Isl1 as an example. It provides details on targeting vector design and construction, introducing the vector into embryonic stem (ES) cell, screening ES cell for the recombination events, injecting ES cells, and generating chimeric and null mice. It also discusses the current issues in the use of Cre/loxP-based gene-targeting approach.

Key words

Mouse Gene targeting Conditional knockout Retinal development Cre recombinase ES cell 

References

  1. 1.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442PubMedCrossRefGoogle Scholar
  2. 2.
    Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755PubMedCrossRefGoogle Scholar
  3. 3.
    Fukushige S, Sauer B (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA 89:7905–7909PubMedCrossRefGoogle Scholar
  4. 4.
    Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486PubMedCrossRefGoogle Scholar
  5. 5.
    Ashery-Padan R, Gruss P (2001) Pax6 lights-up the way for eye development. Curr Opin Cell Biol 13:706–714PubMedCrossRefGoogle Scholar
  6. 6.
    Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proc Natl Acad Sci USA 93:589–595PubMedCrossRefGoogle Scholar
  7. 7.
    Beglopoulos V, Shen J (2004) Gene-targeting technologies for the study of neurological disorders. Neuromolecular Med 6:13–30PubMedCrossRefGoogle Scholar
  8. 8.
    Pan L, Deng M, Xie X, Gan L (2008) ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development 135:1981–1990PubMedCrossRefGoogle Scholar
  9. 9.
    Furuta Y, Lagutin O, Hogan BL, Oliver GC (2000) Retina- and ventral forebrain-specific Cre recombinase activity in transgenic mice. Genesis 26:130–132PubMedCrossRefGoogle Scholar
  10. 10.
    Glaser S, Anastassiadis K, Stewart AF (2005) Current issues in mouse genome engineering. Nat Genet 37:1187–1193PubMedCrossRefGoogle Scholar
  11. 11.
    Thomas KR, Deng C, Capecchi MR (1992) High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol 12:2919–2923PubMedGoogle Scholar
  12. 12.
    Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11:5586–5591PubMedGoogle Scholar
  13. 13.
    te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci USA 89:5128–5132CrossRefGoogle Scholar
  14. 14.
    Yang Y, Seed B (2003) Site-specific gene targeting in mouse embryonic stem cells with intact bacterial artificial chromosomes. Nat Biotechnol 21:447–451PubMedCrossRefGoogle Scholar
  15. 15.
    Ringrose L, Chabanis S, Angrand PO, Woodroofe C, Stewart AF (1999) Quantitative comparison of DNA looping in vitro and in vivo: chromatin increases effective DNA flexibility at short distances. EMBO J 18:6630–6641PubMedCrossRefGoogle Scholar
  16. 16.
    Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27PubMedCrossRefGoogle Scholar
  17. 17.
    Green EL (1966) Biology of the laboratory mouse. McGraw-Hill, New York, p 11Google Scholar
  18. 18.
    Papaioannou V, Johnson R (2000) Production of chimeras by blastocyst and morula injection of targeted ES cells. Gene targeting. Oxford University Press, New York, USA, pp 101–175Google Scholar
  19. 19.
    Le YZ (2011) Conditional gene targeting: dissecting the cellular mechanisms of retinal degenerations. J Ophthalmol 2011:806783PubMedGoogle Scholar
  20. 20.
    Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28:147–155PubMedCrossRefGoogle Scholar
  21. 21.
    Koike C, Nishida A, Ueno S, Saito H, Sanuki R, Sato S, Furukawa A, Aizawa S, Matsuo I, Suzuki N, Kondo M, Furukawa T (2007) Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol Cell Biol 27:8318–8329PubMedCrossRefGoogle Scholar
  22. 22.
    Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93:10887–10890PubMedCrossRefGoogle Scholar
  23. 23.
    Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55PubMedCrossRefGoogle Scholar
  24. 24.
    Rowan S, Cepko CL (2004) Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol 271:388–402PubMedCrossRefGoogle Scholar
  25. 25.
    Yang Z, Ding K, Pan L, Deng M, Gan L (2003) Math5 determines the competence state of retinal ganglion cell progenitors. Dev Biol 264:240–254PubMedCrossRefGoogle Scholar
  26. 26.
    Campsall KD, Mazerolle CJ, De Repentingy Y, Kothary R, Wallace VA (2002) Characterization of transgene expression and Cre recombinase activity in a panel of Thy-1 promoter-Cre transgenic mice. Dev Dyn 224:135–143PubMedCrossRefGoogle Scholar
  27. 27.
    Le YZ, Zheng L, Zheng W, Ash JD, Agbaga MP, Zhu M, Anderson RE (2006) Mouse opsin promoter-directed Cre recombinase expression in transgenic mice. Mol Vis 12:389–398PubMedGoogle Scholar
  28. 28.
    Zimmerman L, Lendahl U, Cunningham M, McKay R, Parr B, Gavin B, Mann J, Vassileva G, McMahon A (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron 12:11–24PubMedCrossRefGoogle Scholar
  29. 29.
    Kersigo J, D’Angelo A, Gray BD, Soukup GA, Fritzsch B (2011) The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. Genesis 49:326–341PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang XM, Chen BY, Ng AH, Tanner JA, Tay D, So KF, Rachel RA, Copeland NG, Jenkins NA, Huang JD (2005) Transgenic mice expressing Cre-recombinase specifically in retinal rod bipolar neurons. Invest Ophthalmol Vis Sci 46:3515–3520PubMedCrossRefGoogle Scholar
  31. 31.
    Ivanova E, Hwang GS, Pan ZH (2010) Characterization of transgenic mouse lines expressing Cre recombinase in the retina. Neuroscience 165:233–243PubMedCrossRefGoogle Scholar
  32. 32.
    Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, Schmid RM (2007) Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development 134:1151–1160PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Rochester Eye Institute, University of RochesterRochesterUSA
  2. 2.Department of Neurobiology and Anatomy, Center for Neural Development and DiseaseUniversity of Rochester Eye Institute, University of RochesterRochesterUSA

Personalised recommendations