Potential Zoonotic Infection of Porcine Endogenous Retrovirus in Xenotransplantation

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 885)

Abstract

Porcine endogenous retrovirus (PERV) is considered the major biosafety issue in xenotransplantation. Several techniques have been employed for the analysis of the PERV status in the animal donor and for the assessment of PERV transmission/infection in the xenograft recipient. In this chapter, methods to assess the expression of PERV and the potential for PERV transmission from a donor animal are described in addition to the identification of relevant loci within the porcine genome.

PERV detection can be carried out using several techniques of which quantitative polymerase chain reaction (PCR) and RT-PCR are the most sensitive. However, other procedures can be employed such as detection of reverse transcriptase activity (i.e. viral replication) in the sample or immunostaining of the infected cells using an anti-PERV antibody. The PERV transmission assay has been described to identify the transmission phenotype of the pig donor, and subsequent risk from a donor. This assay can, therefore, direct the selection of the most suitable animal. Finally, it is important to determine the presence of critical PERV loci involved in transmission in the pig genome and compare between different animals. One of the methods for the analysis of these PERV integration sites is described.

Key words

Porcine endogenous retrovirus Infection assay SYBR green-based quantitative PCR Reverse transcriptase assay In situ immunostaining Splinkerette 

Notes

Acknowledgments

The authors’ PERV research has been funded by the European Sixth Framework Programme (Life Science, Genomics and Biotechnology for Health) funded project LSHB-CT-2006-037377.

References

  1. 1.
  2. 2.
    Fishman JA, Patience C (2004) Xenotransplantation: infectious risk revisited. Am J Transplant 4:1383–1390PubMedCrossRefGoogle Scholar
  3. 3.
    Magre S, Takeuchi Y, Bartosch B (2003) Xenotransplantation and pig endogenous retroviruses. Rev Med Virol 13:311–329PubMedCrossRefGoogle Scholar
  4. 4.
    Mattiuzzo G, Scobie L, Takeuchi Y (2008) Strategies to enhance the safety profile of xenotransplantation: minimizing the risk of viral zoonoses. Curr Opin Organ Transplant 13:184–188PubMedCrossRefGoogle Scholar
  5. 5.
    Scobie L, Takeuchi Y (2009) Porcine endogenous retrovirus and other viruses in xenotransplantation. Curr Opin Organ Transplant 14:175–179PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson CA (2008) Porcine endogenous retroviruses and xenotransplantation. Cell Mol Life Sci 65:3399–3412PubMedCrossRefGoogle Scholar
  7. 7.
    Boeke J, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelement. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 345–362Google Scholar
  8. 8.
    Akiyoshi DE, Denaro M, Zhu H, Greenstein JL, Banerjee P, Fishman JA (1998) Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J Virol 72:4503–4507PubMedGoogle Scholar
  9. 9.
    Le Tissier P, Stoye JP, Takeuchi Y, Patience C, Weiss RA (1997) Two sets of human-tropic pig retrovirus. Nature 389:681–682PubMedCrossRefGoogle Scholar
  10. 10.
    Takeuchi Y, Patience C, Magre S, Weiss RA, Banerjee PT, Le Tissier P, Stoye JP (1998) Host range and interference studies of three classes of pig endogenous retrovirus. J Virol 72:9986–9991PubMedGoogle Scholar
  11. 11.
    Wilson CA, Wong S, VanBrocklin M, Federspiel MJ (2000) Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol 74:49–56PubMedCrossRefGoogle Scholar
  12. 12.
    Oldmixon BA, Wood JC, Ericsson TA, Wilson CA, White-Scharf ME, Andersson G, Greenstein JL, Schuurman HJ, Patience C (2002) Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J Virol 76:3045–3048PubMedCrossRefGoogle Scholar
  13. 13.
    Wood JC, Quinn G, Suling KM, Oldmixon BA, Van Tine BA, Cina R, Arn S, Huang CA, Scobie L, Onions DE, Sachs DH, Schuurman HJ, Fishman JA, Patience C (2004) Identification of exogenous forms of human-tropic porcine endogenous retrovirus in miniature Swine. J Virol 78:2494–2501PubMedCrossRefGoogle Scholar
  14. 14.
    Wilson CA, Wong S, Muller J, Davidson CE, Rose TM, Burd P (1998) Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 72:3082–3087PubMedGoogle Scholar
  15. 15.
    Denner J (2008) Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation? Arch Virol 153:1421–1426PubMedCrossRefGoogle Scholar
  16. 16.
    Garkavenko O, Wynyard S, Nathu D, Muzina M, Muzina Z, Scobie L, Hector RD, Croxson MC, Tan P, Elliott BR (2008) Porcine endogenous retrovirus transmission characteristics from a designated pathogen-free herd. Transplant Proc 40:590–593PubMedCrossRefGoogle Scholar
  17. 17.
    Garkavenko O, Wynyard S, Nathu D, Simond D, Muzina M, Muzina Z, Scobie L, Hector RD, Croxson MC, Tan P, Elliott BR (2008) Porcine endogenous retrovirus (PERV) and its transmission characteristics: a study of the New Zealand designated pathogen-free herd. Cell Transplant 17:1381–1388PubMedCrossRefGoogle Scholar
  18. 18.
    Hector RD, Meikle S, Grant L, Wilkinson RA, Fishman JA, Scobie L (2007) Pre-screening of miniature swine may reduce the risk of transmitting human tropic recombinant porcine endogenous retroviruses. Xenotransplantation 14:222–226PubMedCrossRefGoogle Scholar
  19. 19.
    Scobie L, Taylor S, Wood JC, Suling KM, Quinn G, Meikle S, Patience C, Schuurman HJ, Onions DE (2004) Absence of replication-competent human-tropic porcine endogenous retroviruses in the germ line DNA of inbred miniature Swine. J Virol 78:2502–2509PubMedCrossRefGoogle Scholar
  20. 20.
    Matthews AL, Brown J, Switzer W, Folks TM, Heneine W, Sandstrom PA (1999) Development and validation of a Western immunoblot assay for detection of antibodies to porcine endogenous retrovirus. Transplantation 67:939–943PubMedCrossRefGoogle Scholar
  21. 21.
    Heneine W, Tibell A, Switzer WM, Sandstrom P, Rosales GV, Mathews A, Korsgren O, Chapman LE, Folks TM, Groth CG (1998) No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts. Lancet 352:695–699PubMedCrossRefGoogle Scholar
  22. 22.
    Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, Chapman LE, Lockey C, Onions D, Otto E (1999) Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 285:1236–1241PubMedCrossRefGoogle Scholar
  23. 23.
    Patience C, Patton GS, Takeuchi Y, Weiss RA, McClure MO, Rydberg L, Breimer ME (1998) No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys. Lancet 352:699–701PubMedCrossRefGoogle Scholar
  24. 24.
    Tacke SJ, Bodusch K, Berg A, Denner J (2001) Sensitive and specific immunological detection methods for porcine endogenous retroviruses applicable to experimental and clinical xenotransplantation. Xenotransplantation 8:125–135PubMedCrossRefGoogle Scholar
  25. 25.
    DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7:379–387PubMedGoogle Scholar
  26. 26.
    Quinn G, Wood JC, Ryan DJ, Suling KM, Moran KM, Kolber-Simonds DL, Greenstein JL, Schuurman HJ, Hawley RJ, Patience C (2004) Porcine endogenous retrovirus transmission characteristics of galactose alpha1–3 galactose-deficient pig cells. J Virol 78:5805–5811PubMedCrossRefGoogle Scholar
  27. 27.
    Bartosch B, Stefanidis D, Myers R, Weiss R, Patience C, Takeuchi Y (2004) Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 78:13880–13890PubMedCrossRefGoogle Scholar
  28. 28.
    Mattiuzzo G, Matouskova M, Takeuchi Y (2007) Differential resistance to cell entry by porcine endogenous retrovirus subgroup A in rodent species. Retrovirology 4:93PubMedCrossRefGoogle Scholar
  29. 29.
    Bartosch B, Weiss RA, Takeuchi Y (2002) PCR-based cloning and immunocytological titration of infectious porcine endogenous retrovirus subgroup A and B. J Gen Virol 83:2231–2240PubMedGoogle Scholar
  30. 30.
    Wilson CA (2006) Porcine retrovirus. In: Straw BE, Zimmerman JJ, D’Allaire S, Taylor DJ (eds) Diseases of swine 9th edn. Blackwell Publishing, Ames, pp 545–550Google Scholar
  31. 31.
    Morrison TB, Weis JJ, Wittwer CT (1998) Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24:954–958, 960, 962Google Scholar
  32. 32.
    Devon RS, Porteous DJ, Brookes AJ (1995) Splinkerettes-improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 23:1644–1645PubMedCrossRefGoogle Scholar
  33. 33.
    Issa NC, Wilkinson RA, Griesemer A, Cooper DK, Yamada K, Sachs DH, Fishman JA (2008) Absence of replication of porcine endogenous retrovirus and porcine lymphotropic herpesvirus type 1 with prolonged pig cell microchimerism after pig-to-baboon xenotransplantation. J Virol 82:12441–12448PubMedCrossRefGoogle Scholar
  34. 34.
    Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, Ball C, Pilz I, Braun S, Glimm H, von Kalle C (2007) High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 4:1051–1057PubMedCrossRefGoogle Scholar
  36. 36.
    Carteau S, Hoffmann C, Bushman F (1998) Chromosome structure and human immuno­deficiency virus type 1 cDNA integration: ­centromeric alphoid repeats are a disfavored target. J Virol 72:4005–4014PubMedGoogle Scholar
  37. 37.
    Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751PubMedCrossRefGoogle Scholar
  38. 38.
    Gabriel R, Eckenberg R, Paruzynski A, Bartholomae CC, Nowrouzi A, Arens A, Howe SJ, Recchia A, Cattoglio C, Wang W, Faber K, Schwarzwaelder K, Kirsten R, Deichmann A, Ball CR, Balaggan KS, Yanez-Munoz RJ, Ali RR, Gaspar HB, Biasco L, Aiuti A, Cesana D, Montini E, Naldini L, Cohen-Haguenauer O, Mavilio F, Thrasher AJ, Glimm H, von Kalle C, Saurin W, Schmidt M (2009) Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med 15:1431–1436PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division of Infection and Immunity, Wohl Virion CentreUniversity College LondonLondonUK
  2. 2.Department of Biological and Biomedical SciencesGlasgow Caledonian UniversityGlasgowUK

Personalised recommendations