Fast Sampling of the Cellular Metabolome

  • Walter M. Van Gulik
  • Andre B. Canelas
  • Hilal Taymaz-Nikerel
  • Rutger D. Douma
  • Lodewijk P. de Jonge
  • Joseph J. Heijnen
Part of the Methods in Molecular Biology book series (MIMB, volume 881)


Obtaining meaningful snapshots of the metabolome of microorganisms requires rapid sampling and immediate quenching of all metabolic activity, to prevent any changes in metabolite levels after sampling. Furthermore, a suitable extraction method is required ensuring complete extraction of metabolites from the cells and inactivation of enzymatic activity, with minimal degradation of labile compounds. Finally a sensitive, high-throughput analysis platform is needed to quantify a large number of metabolites in a small amount of sample. An issue which has often been overlooked in microbial metabolomics is the fact that many intracellular metabolites are also present in significant amounts outside the cells, and may interfere with the endometabolome measurements. Attempts to remove the extracellular metabolites with dedicated quenching methods often induce release of intracellular metabolites into the quenching solution. For eukaryotic microorganisms, leakage can be minimized by adaptation of the quenching method. For prokaryotic cells this had not yet been accomplished, so the application of a differential method whereby metabolites are measured in the culture supernatant as well as in total broth samples, to calculate the intracellular levels by subtraction, seems to be the most suitable approach. Here we present an overview of different sampling, quenching, and extraction methods developed for microbial metabolomics, described in the literature. Detailed protocols are provided for rapid sampling, quenching, and extraction for measurement of metabolites in total broth samples, washed cell samples and supernatant, to be applied for quantitative metabolomics of both eukaryotic and prokaryotic microorganisms.

Key words

Fast sampling Quenching Microbial metabolomics Endometabolome Exometabolome Isotope dilution mass spectrometry 


  1. 1.
    Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EE, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 28:362–375PubMedCrossRefGoogle Scholar
  2. 2.
    Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627PubMedCrossRefGoogle Scholar
  3. 3.
    Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards R, Romine M, Osterman A, Bafna V, Smith RD, Pevzner PA (2007) Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res 17(9):1362–1377PubMedCrossRefGoogle Scholar
  4. 4.
    Gancedo JM, Gancedo C (1973) Concentrations of intermediary metabolites in yeast. Biochimie 55:205–211PubMedCrossRefGoogle Scholar
  5. 5.
    Wollenberger A, Ristau O, Schoffa G (1960) Eine Einfache Technik der Extrem Schnellen Abkuhlung Grosserer Gewebestucke. Pflugers Arch Gesamte Physiol Menschen Tiere 270:399–412PubMedCrossRefGoogle Scholar
  6. 6.
    Williams DH, Lund P, Krebs HA (1967) Redox state of free nicotinamide-adenine dinucleotide in cytoplasm and mitochondria of rat liver. Biochem J 103:514–527Google Scholar
  7. 7.
    Veech RL, Egglesto LV, Krebs HA (1969) Redox state of free nicotinamide-adenine dinucleotide phosphate in cytoplasm of rat liver. Biochem J 115:609–619PubMedGoogle Scholar
  8. 8.
    Faupel RP, Seitz HJ, Tarnowsk W, Thiemann V, Weiss C (1972) Problem of tissue sampling from experimental-animals with respect to freezing technique, anoxia, stress and narcosis—new method for sampling rat-liver tissue and physiological values of glycolytic intermediates and related compounds. Arch Biochem Biophys 148:509–522PubMedCrossRefGoogle Scholar
  9. 9.
    Cole HA, Wimpenny JW, Hughes DE (1967) ATP pool in Escherichia coli. I. Measurement of pool using a modified luciferase assay. Biochim Biophys Acta 143:445–453PubMedCrossRefGoogle Scholar
  10. 10.
    Saez MJ, Lagunas R (1976) Determination of intermediary metabolites in yeast—critical-examination of effect of sampling conditions and recommendations for obtaining true levels. Mol Cell Biochem 13:73–78PubMedCrossRefGoogle Scholar
  11. 11.
    De Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral Ph. Anal Biochem 204:118–123PubMedCrossRefGoogle Scholar
  12. 12.
    Wittmann C, Kromer JO, Kiefer P, Binz T, Heinzle E (2004) Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 327:135–139PubMedCrossRefGoogle Scholar
  13. 13.
    Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849PubMedCrossRefGoogle Scholar
  14. 14.
    Taymaz-Nikerel H, De Mey M, Ras C, ten Pierick A, Seifar RM, Van Dam JC, Heijnen JJ, van Gulik WM (2009) Development and application of a differential method for reliable metabolome analysis in Escherichia coli. Anal Biochem 386:9–19PubMedCrossRefGoogle Scholar
  15. 15.
    Harrison DE, Maitra PK (1969) Control of respiration and metabolism in growing Klebsiella aerogenes—role of adenine nucleotides. Biochem J 112:647–656PubMedGoogle Scholar
  16. 16.
    Iversen JJL (1981) A rapid sampling valve with minimal dead space for laboratory scale fermentors. Biotechnol Bioeng 23:437–440CrossRefGoogle Scholar
  17. 17.
    Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In-vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37PubMedCrossRefGoogle Scholar
  18. 18.
    Larsson G, Törnkvist M (1996) Rapid sampling, cell inactivation and evaluation of low extracellular glucose concentrations during fedbatch cultivation. J Biotechnol 49(1–3):69–82PubMedCrossRefGoogle Scholar
  19. 19.
    Lange HC, Eman M, van Zuijlen G, Visser D, van Dam JC, Frank J, Teixeira de Mattos MJ, Heijnen JJ (2001) Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75(4):406–415PubMedCrossRefGoogle Scholar
  20. 20.
    Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270(1):88–96PubMedCrossRefGoogle Scholar
  21. 21.
    Weuster-Botz D (1997) Sampling tube device for monitoring intracellular metabolite dynamics. Anal Biochem 246(2):225–233PubMedCrossRefGoogle Scholar
  22. 22.
    Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22(5):1434–1442PubMedCrossRefGoogle Scholar
  23. 23.
    Visser D, van Zuijlen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GWK, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous pulse experiments. Biotechnol Bioeng 79:674–681PubMedCrossRefGoogle Scholar
  24. 24.
    Mashego MR, van Gulik WM, Vinke JL, Visser D, Heijnen JJ (2006) In vivo kinetics with rapid perturbation experiments in Saccharomyces cerevisiae using a second-generation BioScope. Metab Eng 8:370–383PubMedCrossRefGoogle Scholar
  25. 25.
    Nasution U, van Gulik WM, Pröll A, van Winden WA, Heijnen JJ (2006) Generating short term kinetic responses of primary metabolism of Penicillium chrysogenum through glucose perturbation in the BioScope mini reactor. Metab Eng 8:395–405PubMedCrossRefGoogle Scholar
  26. 26.
    Visser D, van Zuylen GA, van Dam JC, Eman MR, Pröll A, Ras C, Wu L, van Gulik WM, Heijnen JJ (2004) Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnol Bioeng 88:157–167PubMedCrossRefGoogle Scholar
  27. 27.
    Mashego MR, van Gulik WM, Heijnen JJ (2007) Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor. FEMS Yeast Res 7:48–66PubMedCrossRefGoogle Scholar
  28. 28.
    De Mey M, Taymaz-Nikerel H, Baart G, Waegeman H, Maertens J, Heijnen JJ, van Gulik WM (2010) Catching prompt metabolite dynamics in Escherichia coli with the BioScope at oxygen rich conditions. Metab Eng 12:477–487PubMedCrossRefGoogle Scholar
  29. 29.
    Canelas AB, Ras C, ten Pierick A, van Dam JC, Heijnen JJ, van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4:226–239CrossRefGoogle Scholar
  30. 30.
    Villas-Bôas SG, Bruheim P (2007) Cold glycerol–saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal Biochem 370:87–97PubMedCrossRefGoogle Scholar
  31. 31.
    Bolten CJ, Wittmann C (2008) Appropriate sampling for intracellular amino acid analysis in five phylogenetically different yeasts. Biotechnol Lett 30:1993–2000PubMedCrossRefGoogle Scholar
  32. 32.
    Oldiges M, Takors R (2005) Applying metabolic profiling techniques for stimulus-response experiments: chances and pitfalls. Adv Biochem Eng Biotechnol 92:173–196PubMedGoogle Scholar
  33. 33.
    Mashego MR, Rumbold K, De Mey M, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16PubMedCrossRefGoogle Scholar
  34. 34.
    Hancock R (1958) The intracellular amino acids of Staphylococcus aureus: release and analysis. Biochim Biophys Acta 28:402–412PubMedCrossRefGoogle Scholar
  35. 35.
    Hommes FA (1964) Oscillatory reductions of pyridine nucleotides during anaerobic glycolysis in brewers yeast. Arch Biochem Biophys 108:36–46PubMedCrossRefGoogle Scholar
  36. 36.
    Gale EFJ (1947) The assimilation of amino-acids by bacteria 1. The passage of certain amino-acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. Gen Microbiol 1:53–76Google Scholar
  37. 37.
    Work E (1949) Chromatographic investigations of amino-acids from microorganisms 1. The amico-acids from Corynebacterium diphtheriae. Biochim Biophys Acta 3:400–411Google Scholar
  38. 38.
    Fuerst R, Wagner RP (1957) An analysis of the free intracellular amino acids of certain strains of Neurospora. Arch Biochem Biophys 70:311–326PubMedCrossRefGoogle Scholar
  39. 39.
    Bent KJ, Morton AG (1964) Amino acid composition of fungi during development in submerged culture. Biochem J 92:260–269PubMedGoogle Scholar
  40. 40.
    Maharjan RP, Ferenci T (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal Biochem 313:145–154PubMedCrossRefGoogle Scholar
  41. 41.
    Rabinowitz JD, Kimball E (2007) Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167–6173PubMedCrossRefGoogle Scholar
  42. 42.
    Bergmeyer HU (1983) Methods of enzymatic analysis. VCH Publishers, WeinheimGoogle Scholar
  43. 43.
    Wu L, Mashego MR, van Dam JC, Pröll A, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ (2005) Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem 336:164–171PubMedCrossRefGoogle Scholar
  44. 44.
    Maleki Seifar R, Zhao Z, van Dam JC, van Winden WA, van Gulik WM, Heijnen JJ (2008) Quantitative analysis of metabolites in complex biological samples using ion-pair reversed-phase liquid chromatography-isotope dilution tandem mass spectrometry. J Chromatogr A 1187:103–110CrossRefGoogle Scholar
  45. 45.
    Seifar RM, Ras C, van Dam JC, van Gulik WM, Heijnen JJ, van Winden WA (2009) Simultaneous quantification of free nucleotides in complex biological samples using ion pair reversed phase liquid chromatography isotope dilution tandem mass spectrometry. Anal Biochem 388:213–219PubMedCrossRefGoogle Scholar
  46. 46.
    Douma RD, de Jonge LP, Jonker CT, Seifar RM, Heijnen JJ, van Gulik WM (2010) Intracellular metabolite determination in the presence of extracellular abundance: application to the penicillin biosynthesis pathway in Penicillium chrysogenum. Biotechnol Bioeng 107(1):105–115PubMedCrossRefGoogle Scholar
  47. 47.
    Mashego MR, van Gulik WM, Vinke JL, Heijnen JJ (2003) Critical evaluation of sampling techniques for residual glucose determination in carbon-limited chemostat culture of Saccharomyces cerevisiae. Biotechnol Bioeng 83:395–399PubMedCrossRefGoogle Scholar
  48. 48.
    van Dam JC, Eman MR, Frank J, Lange HC, van Dedem GWK, Heijnen JJ (2002) Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Anal Chim Acta 460:209–218CrossRefGoogle Scholar
  49. 49.
    Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81:7379–7389PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Walter M. Van Gulik
    • 1
  • Andre B. Canelas
    • 1
  • Hilal Taymaz-Nikerel
    • 1
  • Rutger D. Douma
    • 1
  • Lodewijk P. de Jonge
    • 1
  • Joseph J. Heijnen
    • 1
  1. 1.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations