Maize Somatic Embryogenesis: Recent Features to Improve Plant Regeneration

  • Verónica Garrocho-Villegas
  • María Teresa de Jesús-Olivera
  • Estela Sánchez Quintanar
Part of the Methods in Molecular Biology book series (MIMB, volume 877)


Plant regeneration capacity is maintained through the life of a plant by the stem cell niche present in the meristems. Stem cells are capable of differentiating into any plant organ, allowing propagation of new plants by different techniques. Among them, somatic embryogenesis is a widely used technique characterized by a complex process that involves coordinated expression of genes, mediated by the influence of specific hormones, nutrients, stress, and/or environmental signals. This tool is particularly relevant in the propagation of genetically improved crops. The intrinsic embryogenic potential of the explant used as starting material for plant in vitro cultures varies depending on the genotype of each plant species. Particularly in maize, the regeneration capacity is lost during the course of tissue maturation, since embryogenic callus (E) is almost exclusively obtained from immature zygotic embryos. In this chapter, the latest advances in the literature for maize somatic embryogenesis process are reviewed. Further, a detailed procedure for maize plant regeneration from E callus is described. The callus obtained from immature zygotic embryos is capable to generate somatic embryos that germinate and develop into fertile normal plants.

Key words

Auxins Culture medium Embryogenic callus Plant regeneration Somatic embryos 



This project received financial support from Consejo Nacional de Ciencia y Tecnologia (CONACYT) grant No. 101327.


  1. 1.
    Martin MA (2010) First generation biofuels compete. Nat Biotechnol 27:596–608Google Scholar
  2. 2.
    Orozco MA, Colín MS, Sánchez CAJ, Varela SA, Domínguez SS (2009) Resistencias, prehistoria, historia y diferencias de teocintle a maíz. ISBN:978-607-00-2125-1. DR ©Abel Munoz Orozco, MéxicoGoogle Scholar
  3. 3.
    West M, Harada JJ (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369PubMedGoogle Scholar
  4. 4.
    Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423PubMedGoogle Scholar
  5. 5.
    Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol 23:153–161CrossRefGoogle Scholar
  6. 6.
    Goldberg RB, Barker SJ, Perez-Grau L (1989) Regulation of gene expression during plant embryogenesis. Cell 56:149–160PubMedCrossRefGoogle Scholar
  7. 7.
    Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207–214CrossRefGoogle Scholar
  8. 8.
    Sánchez de Jimenez E, Vargas M, Aguilar R, Jimenez E (1988) Age-dependent responsiveness of callus to cell differentiation stimulus in maize callus culture. Plant Physiol Biochem 26:723–732Google Scholar
  9. 9.
    Jiménez VM, Bangerth F (2001) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus culture derived from them as related to morphogenesis in vitro. Plant Sci 160:247–257PubMedCrossRefGoogle Scholar
  10. 10.
    Monteiro M, Kevers C, Dommes J, Gaspar T (2002) A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tissue Organ Cult 68:225–232CrossRefGoogle Scholar
  11. 11.
    Bohorova EN, Luna B, Brito RM, Hoisington DA (1995) Regeneration potential of tropical and subtropical mid altitude and highland maize inbreeds. Maydica 40:275–281Google Scholar
  12. 12.
    El-Itriby HA, Assem SK, Hussein EHA et al (2003) Regeneration and transformation of Egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery system. In Vitro Cell Dev Biol Plant 39:524–531CrossRefGoogle Scholar
  13. 13.
    Aguado-Santacruz GA, Garcia-Moya E, Aguilar-Acuna JL et al (2007) In vitro plant regeneration from quality protein maize. In Vitro Cell Dev Biol Plant 43:215–224Google Scholar
  14. 14.
    Rakshit S, Rashid Z, Sekhar JC et al (2010) Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tissue Organ Cult 100:31–37CrossRefGoogle Scholar
  15. 15.
    He G, Zhang J, Li K et al (2006) An improved system to establish highly embryogenic haploid cell and protoplast cultures from pollen calluses of maize (Zea mays L.). Plant Cell Tissue Organ Cult 86:15–25CrossRefGoogle Scholar
  16. 16.
    Tang F, Tao Y, Zhao T, Wang G (2006) In vitro production of haploid and double haploid pants from pollinated ovaries of maize (Zea mays). Plant Cell Tissue Organ Cult 84:233–237CrossRefGoogle Scholar
  17. 17.
    Vladimir S, Gilbertson L, Adae P, Duncan D (2006) Agrobacterium mediated transformation of seedling-derived maize callus. Plant Cell Rep 25:320–328CrossRefGoogle Scholar
  18. 18.
    Sairam RV, Paran M, Franklin G et al (2003) Shoot meristem an ideal explant for Zea mays L transformation. Genome 46:323–329PubMedCrossRefGoogle Scholar
  19. 19.
    Huang XQ, Wei ZM (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep 22:793–800PubMedCrossRefGoogle Scholar
  20. 20.
    Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germoplasm with high Type II culture formation response. Maize Genet Coop Newsletter 65:92–93Google Scholar
  21. 21.
    Abdel-Rahman MM, Widholm JM (2010) Maize tissue culture plant regeneration ability could be improved by polyethylene glycol treatment. In Vitro Cell Dev Biol 6:509–515Google Scholar
  22. 22.
    Green CE, Philips RL (1975) Plant regeneration from tissue cultures of maize. Crop Sci 15:417–421CrossRefGoogle Scholar
  23. 23.
    Deng S, Dong Z, Zhan K et al (2009) Moderate desiccation dramatically improves shoot regeneration from maize (Zea mays L.) callus. In Vitro Cell Dev Biol Plant 45:99–103CrossRefGoogle Scholar
  24. 24.
    Chu CC, Wang CC, Sun CS et al (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668Google Scholar
  25. 25.
    Fontanet P, Vicient CM (2008) Maize embryogenesis. In: Suárez MF, Bozhkov PV (eds) Plant embryogenesis, vol 427, Methods in molecular biology. Humana, Totowa, pp 17–29CrossRefGoogle Scholar
  26. 26.
    Loza-Rubio E, Rojas E, Gómez L et al (2008) Development of an edible rabies vaccine in maize using Vnukovo strain. In: Dodet B, Fooks AR, Müller T, Tordo N, Scientific and Technical Department of the OIE (eds) Towards the elimination of rabies in Eurasia. Developments in biologicals, vol 131. Karger, Basel, pp 477–482Google Scholar
  27. 27.
    Che P, Love TM, Frame BR et al (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14PubMedCrossRefGoogle Scholar
  28. 28.
    Duncan DR, Kriz AL, Widholm JM (2003) Globulin-1 gene expression in regenerable Zea mays (maize) callus. Plant Cell Rep 21:684–689PubMedGoogle Scholar
  29. 29.
    Loyola-Vargas VM, Sánchez de Jiménez E (1986) Effect of substrate, ammonium and glutamine on nitrogen assimilation enzymes during callus growth of maize. J Plant Physiol 125:235–242CrossRefGoogle Scholar
  30. 30.
    Lozovaya V, Ulanov A, Lygin A et al (2006) Biochemical features of maize tissues with different capacities to regenerate plants. Planta 224:1385–1399PubMedCrossRefGoogle Scholar
  31. 31.
    Spencer TM, Gordon-Kamm WJ, Daines RJ et al (1990) Bialaphos selection of stable transformants from maize cell culture. Theor Appl Genet 79:625–631CrossRefGoogle Scholar
  32. 32.
    Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88CrossRefGoogle Scholar
  33. 33.
    Songstad DD, Armstrong CL, Petersen WL et al (1996) Production of transgenic maize plants and progeny by bombardment of Hi II immature zygotic embryos. In Vitro Cell Dev Biol Plant 32:179–183CrossRefGoogle Scholar
  34. 34.
    Frame BR, Zhang H, Cocciolone SM et al (2000) Production of transgenic maize from bombarded Type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–29CrossRefGoogle Scholar
  35. 35.
    Yang A, He C, Zhang K, Zhang J (2006) Improvement    of    agrobacterium-mediated transformation of embryogenic calluses from maize elite inbred lines. In Vitro Cell Dev Biol Plant 42:215–219CrossRefGoogle Scholar
  36. 36.
    Petolino JF, Arnold NL (2009) Whiskers-mediated maize transformation. In: Scott MP (ed) Transgenic maize, Methods in molecular biology. Humana, Clifton. doi:10.1007/976-1 597 45-494-D_5Google Scholar
  37. 37.
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  38. 38.
    García-Flores C, Sánchez de Jiménez E, Marquez-Guzman J (1993) Induction and maintenance of embryonic cultures of Zea mays L (Poaceae). Phyton 54:1–6Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Verónica Garrocho-Villegas
    • 1
  • María Teresa de Jesús-Olivera
    • 2
  • Estela Sánchez Quintanar
    • 1
  1. 1.Laboratorio 103, Conjunto “E”, Paseo de la Investigación Científica, Circuito InstitutosCiudad UniversitariaMéxico D.F.México
  2. 2.Plant Cell Tissue Culture Laboratory, Chemistry FacultyUNAMMexico, D.F.Mexico

Personalised recommendations