Advertisement

Generation and Staining of Intestinal Stem Cell Lineage in Adult Midgut

  • Shree Ram SinghEmail author
  • Manoj K. Mishra
  • Madhuri Kango-Singh
  • Steven X. Hou
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 879)

Abstract

Stem cell-mediated tissue repair is a promising approach in regenerative medicine. Intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. Recently, using lineage tracing and molecular marker labeling, intestinal stem cells (ISCs) have been identified in Drosophila adult midgut. ISCs reside at the basement membrane and are multipotent as they produce both enterocytes and enteroendocrine cells. The adult Drosophila midgut provides an excellent in vivo model organ to study ISC behavior during aging, stress, regeneration, and infection. It has been demonstrated that Notch, Janus kinase/signal transducer and activator of transcription, epidermal growth factor receptor/mitogen-activated protein kinase, Hippo, and wingless signaling pathways regulate ISCs proliferation and differentiation. There are plenty of genetic tools and markers developed in recent years in Drosophila stem cell studies. These tools and markers are essential in the precise identification of stem cells as well as manipulation of genes in stem cell regulation. Here, we describe the details of genetic tools, markers, and immunolabeling techniques used in identification and characterization of adult midgut stem cells in Drosophila.

Key words

Drosophila Adult midgut Intestinal stem cell Genetic techniques Immunolabeling 

Notes

Acknowledgments

M.K.S. is supported by the Knight’s Templar Eye Foundation and start-up support from the University of Dayton, OH. This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute.

References

  1. 1.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  2. 2.
    Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217PubMedCrossRefGoogle Scholar
  3. 3.
    Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145:851–862PubMedCrossRefGoogle Scholar
  4. 4.
    Amcheslavsky A, Jiang J, Ito N, Ip YT (2011) Tuberous Sclerosis Complex and Myc coordinate intestinal stem cell growth and division in Drosophila. J Cell Biol 193:695–710PubMedCrossRefGoogle Scholar
  5. 5.
    Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R (2011) EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 354:31–43PubMedCrossRefGoogle Scholar
  6. 6.
    Singh SR, Zheng Z, Wang H, Oh SW, Chen X, Hou SX (2010) Competitiveness for the niche and mutual dependence of the germline and somatic stem cells in the Drosophila testis are regulated by the JAK/STAT signaling. J Cell Physiol 223:500–510PubMedGoogle Scholar
  7. 7.
    Singh SR, Burnicka-Turek O, Chauhan C, Hou SX (2011) Spermatogonial stem cells, infertility and testicular cancer. J Cell Mol Med 15:468–483PubMedCrossRefGoogle Scholar
  8. 8.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedCrossRefGoogle Scholar
  9. 9.
    Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607PubMedCrossRefGoogle Scholar
  10. 10.
    Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920PubMedCrossRefGoogle Scholar
  11. 11.
    Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474PubMedCrossRefGoogle Scholar
  12. 12.
    Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479PubMedCrossRefGoogle Scholar
  13. 13.
    Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315:988–992PubMedCrossRefGoogle Scholar
  14. 14.
    Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3:442–455PubMedCrossRefGoogle Scholar
  15. 15.
    Choi NH, Kim JG, Yang DJ, Kim YS, Yoo MA (2008) Age-related changes in Drosophila midgut are associated with PVF2, a PDGF/VEGF-like growth factor. Aging Cell 7:318–334PubMedCrossRefGoogle Scholar
  16. 16.
    Choi YJ, Hwang MS, Park JS, Bae SK, Kim YS, Yoo MA (2008) Age-related upregulation of Drosophila caudal gene via NF-kappaB in the adult posterior midgut. Biochim Biophys Acta 1780:1093–1100PubMedCrossRefGoogle Scholar
  17. 17.
    Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4:49–61PubMedCrossRefGoogle Scholar
  18. 18.
    Chatterjee M, Ip YT (2009) Pathogenic stimulation of intestinal stem cell response in Drosophila. J Cell Physiol S220:664–671CrossRefGoogle Scholar
  19. 19.
    Apidianakis Y, Pitsouli C, Perrimon N, Rahme L (2009) Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci USA 106:20883–20888PubMedCrossRefGoogle Scholar
  20. 20.
    Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211PubMedCrossRefGoogle Scholar
  21. 21.
    Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344PubMedCrossRefGoogle Scholar
  22. 22.
    Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8:152PubMedCrossRefGoogle Scholar
  23. 23.
    Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes RD, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325:340–343PubMedCrossRefGoogle Scholar
  24. 24.
    Buszczak M, Paterno S, Spradling AC (2009) Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science 323:248–251PubMedCrossRefGoogle Scholar
  25. 25.
    Bardin AJ, Perdigoto CN, Southall TD, Brand AH, Schweisguth F (2010) Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 137:705–714PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137:1343–1355PubMedCrossRefGoogle Scholar
  27. 27.
    Jiang H, Edgar BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136:483–493PubMedCrossRefGoogle Scholar
  28. 28.
    Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95PubMedCrossRefGoogle Scholar
  29. 29.
    Apidianakis Y, Rahme LG (2011) Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 4:21–30PubMedCrossRefGoogle Scholar
  30. 30.
    Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137:4147–4158PubMedCrossRefGoogle Scholar
  31. 31.
    Lee WC, Beebe K, Sudmeier L, Micchelli CA (2009) Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 136:2255–2264PubMedCrossRefGoogle Scholar
  32. 32.
    Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci USA 107:21064–21069PubMedCrossRefGoogle Scholar
  33. 33.
    Mathur D, Bost A, Driver I, Ohlstein B (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327:210–213PubMedCrossRefGoogle Scholar
  34. 34.
    Maeda K, Takemura M, Umemori M, Adachi-Yamada T (2008) E-cadherin prolongs the moment for interaction between intestinal stem cell and its progenitor cell to ensure Notch signaling in adult Drosophila midgut. Genes Cells 13:1219–1227PubMedCrossRefGoogle Scholar
  35. 35.
    Wang P, Hou SX (2010) Regulation of intestinal stem cells in mammals and Drosophila. J Cell Physiol 222:33–37PubMedCrossRefGoogle Scholar
  36. 36.
    Cordero J, Vidal M, Sansom O (2009) APC as a master regulator of intestinal homeostasis and transformation: from flies to vertebrates. Cell Cycle 8:2926–2931PubMedCrossRefGoogle Scholar
  37. 37.
    Beebe K, Lee WC, Micchelli CA (2010) JAK/STAT signaling coordinates stem cell proliferation and multilineage differentiation in the Drosophila intestinal stem cell lineage. Dev Biol 338:28–37PubMedCrossRefGoogle Scholar
  38. 38.
    Lin G, Xu N, Xi R (2008) Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455:1119–1123PubMedCrossRefGoogle Scholar
  39. 39.
    Liu W, Singh SR, Hou SX (2010) JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem 109:992–999PubMedGoogle Scholar
  40. 40.
    Lin G, Xu N, Xi R (2010) Paracrine unpaired signaling through the JAK/STAT pathway controls self-renewal and lineage differentiation of Drosophila intestinal stem cells. J Mol Cell Biol 2:37–49PubMedCrossRefGoogle Scholar
  41. 41.
    Park JS, Kim YS, Yoo MA (2009) The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging 1:637–651PubMedGoogle Scholar
  42. 42.
    Park JS, Kim YS, Kim JG, Lee SH, Park SY, Yamaguchi M, Yoo MA (2010) Regulation of the Drosophila p38b gene by transcription factor DREF in the adult midgut. Biochim Biophys Acta 1799:510–519PubMedCrossRefGoogle Scholar
  43. 43.
    Hochmuth CE, Biteau B, Bohmann D, Jasper H (2011) Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8:188–199PubMedCrossRefGoogle Scholar
  44. 44.
    Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137:4135–4145PubMedCrossRefGoogle Scholar
  45. 45.
    Staley BK, Irvine KD (2010) Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 20:1580–1587PubMedCrossRefGoogle Scholar
  46. 46.
    Biteau B, Jasper H (2011) EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development 138:1045–1055PubMedCrossRefGoogle Scholar
  47. 47.
    Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454:651–655PubMedCrossRefGoogle Scholar
  48. 48.
    Fox DT, Spradling AC (2009) The Drosophila hindgut lacks constitutively active adult stem cells but proliferates in response to tissue damage. Cell Stem Cell 5:290–297PubMedCrossRefGoogle Scholar
  49. 49.
    Losick VP, Morris LX, Fox DT, Spradling A (2011) Droso phila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21:159–171PubMedCrossRefGoogle Scholar
  50. 50.
    Singh SR, Liu W, Hou SX (2007) The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191–203PubMedCrossRefGoogle Scholar
  51. 51.
    Singh SR, Zeng X, Zheng Z, Hou SX (2011) The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle 10:1109–1120PubMedCrossRefGoogle Scholar
  52. 52.
    Fox DT, Morris LX, Nystul T, Spradling AC (2009) Lineage analysis of stem cells. In: The Stem Cell Research Community (ed.) StemBook. doi: 10.3824/stembook.1.33.1Google Scholar
  53. 53.
    Singh SR, Hou SX (2008) Immunohistological techniques for studying the Drosophila male germline stem cell. Methods Mol Biol 450:45–59PubMedCrossRefGoogle Scholar
  54. 54.
    Liu W, Hou SX (2008) Genetic tools used for cell lineage tracing and gene manipulation in Drosophila germline stem cells. Methods Mol Biol 450:61–70PubMedCrossRefGoogle Scholar
  55. 55.
    Zeng X, Chauhan C, Hou SX (2010) Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in Drosophila. Genesis 48:607–611PubMedCrossRefGoogle Scholar
  56. 56.
    Zeng X, Singh SR, Hou D, Hou SX (2010) Tumor suppressors Sav/Scrib and oncogene Ras regulate stem-cell transformation in adult Drosophila malpighian tubules. J Cell Physiol 224:766–774PubMedCrossRefGoogle Scholar
  57. 57.
    Harrison DA, Perrimon N (1993) A simple and efficient generation of marked clones in Drosophila. Curr Biol 3:424–433PubMedCrossRefGoogle Scholar
  58. 58.
    Kirilly D, Spana EP, Perrimon N, Padgett RW, Xie T (2005) BMP signaling is required for controlling somatic stem cell self-renewal in the Drosophila ovary. Dev Cell 9:651–662PubMedCrossRefGoogle Scholar
  59. 59.
    Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461PubMedCrossRefGoogle Scholar
  60. 60.
    Lee T, Luo L (2001) Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 24:251–254PubMedCrossRefGoogle Scholar
  61. 61.
    Wu JS, Luo L (2006) A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1:2583–2589PubMedCrossRefGoogle Scholar
  62. 62.
    Shrestha BR, Grueber WB (2011) Generation and staining of MARCM clones in Drosophila. Cold Spring Harb Protoc 2011(8):973–979, pii: pdb.prot5659 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shree Ram Singh
    • 1
    Email author
  • Manoj K. Mishra
    • 2
  • Madhuri Kango-Singh
    • 3
  • Steven X. Hou
    • 1
  1. 1.Mouse Cancer Genetics ProgramNational Cancer InstituteFrederickUSA
  2. 2.Department of Math and ScienceAlabama State UniversityMontgomeryUSA
  3. 3.Department of BiologyUniversity of DaytonDaytonUSA

Personalised recommendations