Ceramide and Sphingosine-1-Phosphate Signaling in Embryonic Stem Cell Differentiation

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 874)

Abstract

Recent studies show that bioactive lipids are important regulators for stem cell survival and differentiation. The sphingolipid ceramide and its derivative, sphingosine-1-phosphate (S1P), can act synergistically on embryonic stem (ES) cell differentiation. We show here simple methods to analyze sphingolipids in differentiating ES cells and to use ceramide and S1P analogs for the guided differentiation of mouse ES cells toward neuronal and glial lineage.

Key words

Ceramide Sphingolipid Sphingosine-1-phosphate Neuroprogenitor Oligodendrocyte precursor Apoptosis Teratoma 

Notes

Acknowledgements

This study was in part supported by the NIH grants R01AG034389 and R01NS046835, a GRAVentureLab grant, and a March of Dimes grant 6-FY08-322.

References

  1. 1.
    Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734PubMedCrossRefGoogle Scholar
  2. 2.
    Yanai J, Doetchman T, Laufer N, Maslaton J, Mor-Yosef S, Safran A, Shani M, Sofer D (1995) Embryonic cultures but not embryos transplanted to the mouse’s brain grow rapidly without immunosuppression. Int J Neurosci 81:21–26PubMedCrossRefGoogle Scholar
  3. 3.
    Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 42:162–165CrossRefGoogle Scholar
  4. 4.
    Teramoto K, Hara Y, Kumashiro Y, Chinzei R, Tanaka Y, Shimizu-Saito K, Asahina K, Teraoka H, Arii S (2005) Teratoma formation and hepatocyte differentiation in mouse liver transplanted with mouse embryonic stem cell-derived embryoid bodies. Transplant Proc 37:285–286PubMedCrossRefGoogle Scholar
  5. 5.
    Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli AD, de Bruin JL, Fedoseyeva EV, Robbins RC (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:I166–I172PubMedGoogle Scholar
  6. 6.
    Sanchez-Pernaute R, Studer L, Ferrari D, Perrier A, Lee H, Vinuela A, Isacson O (2005) Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 23:914–922PubMedCrossRefGoogle Scholar
  7. 7.
    Kim D, Gu Y, Ishii M, Fujimiya M, Qi M, Nakamura N, Yoshikawa T, Sumi S, Inoue K (2003) In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas 27:e34–e41PubMedCrossRefGoogle Scholar
  8. 8.
    Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–1791PubMedCrossRefGoogle Scholar
  9. 9.
    Fong SP, Tsang KS, Chan AB, Lu G, Poon WS, Li K, Baum LW, Ng HK (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 85:1851–1862PubMedCrossRefGoogle Scholar
  10. 10.
    Choi D, Oh HJ, Chang UJ, Koo SK, Jiang JX, Hwang SY, Lee JD, Yeoh GC, Shin HS, Lee JS, Oh B (2002) In vivo differentiation of mouse embryonic stem cells into hepatocytes. Cell Transplant 11:359–368PubMedGoogle Scholar
  11. 11.
    Bielby RC, Boccaccini AR, Polak JM, Buttery LD (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10:1518–1525PubMedGoogle Scholar
  12. 12.
    Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45:4251–4255PubMedCrossRefGoogle Scholar
  13. 13.
    Baker M (2009) Stem cells: fast and furious. Nature 458:962–965PubMedCrossRefGoogle Scholar
  14. 14.
    Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS, Guetta E, Itskovitz-Eldor J (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93:1278–1284PubMedCrossRefGoogle Scholar
  15. 15.
    Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158PubMedCrossRefGoogle Scholar
  16. 16.
    Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, Connolly AJ, Robbins RC, Wu JC (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8:2608–2612PubMedCrossRefGoogle Scholar
  17. 17.
    Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111:769–781PubMedCrossRefGoogle Scholar
  18. 18.
    Kuznetsov S, Cherman N, Gehron Robey P (2010) In vivo bone formation by progeny of human embryonic stem cells. Stem Cells Dev 20:269–287PubMedCrossRefGoogle Scholar
  19. 19.
    Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH (2010) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89:911–919PubMedCrossRefGoogle Scholar
  20. 20.
    Bieberich E (2008) Smart drugs for smarter stem cells: making SENSe (sphingolipid-enhanced neural stem cells) of ceramide. Neurosignals 16:124–139PubMedCrossRefGoogle Scholar
  21. 21.
    Bieberich E (2008) Ceramide signaling in cancer and stem cells. Future Lipidol 3:273–300PubMedCrossRefGoogle Scholar
  22. 22.
    Bieberich E, Hu B, Silva J, MacKinnon S, Yu RK, Fillmore H, Broaddus WC, Ottenbrite RM (2002) Synthesis and characterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett 181:55–64PubMedCrossRefGoogle Scholar
  23. 23.
    Bieberich E, Kawaguchi T, Yu RK (2000) N-Acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem 275:177–181PubMedCrossRefGoogle Scholar
  24. 24.
    Wang G, Krishnamurthy K, Umapathy NS, Verin AD, Bieberich E (2009) The carboxyl-terminal domain of atypical protein kinase Czeta binds to ceramide and regulates junction formation in epithelial cells. J Biol Chem 284:14469–14475PubMedCrossRefGoogle Scholar
  25. 25.
    Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280:26415–26424PubMedCrossRefGoogle Scholar
  26. 26.
    Dutta D, Ray S, Home P, Larson M, Wolfe MW, Paul S (2011) Self renewal vs. lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance. Stem Cells 29(4):618–628 [epub ahead of print]PubMedCrossRefGoogle Scholar
  27. 27.
    Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG (2003) Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J Cell Biol 162:469–479PubMedCrossRefGoogle Scholar
  28. 28.
    Bieberich E, MacKinnon S, Silva J, Yu RK (2001) Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J Biol Chem 276:44396–44404PubMedCrossRefGoogle Scholar
  29. 29.
    Bieberich E (2010) There is more to a lipid than just being a Fat: sphingolipid-guided differentiation of oligodendroglial lineage from embryonic stem cells. Neurochem Res 36(9):1601–1611 [epub ahead of print]PubMedCrossRefGoogle Scholar
  30. 30.
    Hancock CR, Wetherington JP, Lambert NA, Condie BG (2000) Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells. Biochem Biophys Res Commun 271:418–421PubMedCrossRefGoogle Scholar
  31. 31.
    Westmoreland JJ, Hancock CR, Condie BG (2001) Neuronal development of embryonic stem cells: a model of GABAergic neuron differentiation. Biochem Biophys Res Commun 284:674–680PubMedCrossRefGoogle Scholar
  32. 32.
    Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102PubMedCrossRefGoogle Scholar
  33. 33.
    Roach L, McNelsh JD (2002) Methods for the isolation and maintenance of murine embryonic stem cells. In: Turksen K (ed) Methods in molecular biology, vol 183, Embryonic stem cells. Humana, New Jersey, pp 1–16Google Scholar
  34. 34.
    Salli U, Fox TE, Carkaci-Salli N, Sharma A, Robertson GP, Kester M, Vrana KE (2009) Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide. Stem Cells Dev 18:55–65PubMedCrossRefGoogle Scholar
  35. 35.
    Krishnamurthy K, Wang G, Silva J, Condie BG, Bieberich E (2007) Ceramide regulates atypical PKC{zeta}/{lambda}-mediated cell polarity in primitive ectoderm cells: a novel function of sphingolipids in morphogenesis. J Biol Chem 282:3379–3390PubMedCrossRefGoogle Scholar
  36. 36.
    Krishnamurthy K, Dasgupta S, Bieberich E (2007) Development and characterization of a novel anti-ceramide antibody. J Lipid Res 48:968–975PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of GeorgiaGeorgia Health Sciences UniversityAugustaUSA

Personalised recommendations