Real-Time Imaging of Tumors Using Replication-Competent Light-Emitting Microorganisms

  • Yong A. Yu
  • Stephanie Weibel
  • Aladar A. Szalay
Part of the Methods in Molecular Biology book series (MIMB, volume 872)


Early detection of cancer and metastases is pivotal to the success of subsequent treatment intervention. In recent years, the use of live microorganisms, such as viruses and bacteria, has gained substantial research and clinical interest in both detection and therapy of cancer. Many of these live microorganisms have shown remarkable tumor-specific replication following systemic delivery. With the aid of modern molecular technologies, modified live microorganisms can be engineered to carry additional diagnostic and therapeutic capabilities. We have shown that when armed with light-emitting protein genes, such as genes for luciferase and green fluorescent protein, the entry and specific amplification of systemically-delivered vaccinia virus and bacteria in tumors can be visualized in real time using a low-light imager, or using macro- and micro-fluorescence microscopes. Therefore, through optical imaging, the location of tumors and metastases could be revealed by these light-emitting microorganisms. The tumor-colonization capability has been demonstrated in both immuno-competent as well as immuno-compromised rodent models with syngeneic and allogeneic tumors. Based on their “tumor-finding” nature, bacteria and viruses could be further designed as “vehicles” to carry multiple genes for detection and therapy of cancer.

Key words

Vaccinia virus Bacteria Systemic delivery Tumors Metastases GFP Luciferase Fluorescence and luminescence imaging 



This work was supported by an internal research grant from Genelux Corporation. The authors would like to thank Qian Zhang, Nanhai Chen, and Terry Trevino for scientific and technical contributions, and Kim Duffy for editorial assistance.


  1. 1.
    Yu, Y. A., Shabahang, S., Timiryasova, T. M., Zhang, Q., Beltz, R., Gentschev, I., Goebel, W., Szalay, A. A. (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat. Biotechnol. 22, 313–320.PubMedCrossRefGoogle Scholar
  2. 2.
    Woo, Y., Adusumilli, P. S., Fong, Y. (2006) Advances in oncolytic viral therapy. Curr. Opin. Investig. Drugs. 7, 549–559.PubMedGoogle Scholar
  3. 3.
    Zhang, Q., Yu, Y. A., Wang, E., Chen, N., Danner, R. L., Munson, P. J., Marincola, F. M., and Szalay, A. A. (2007) Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res. 67, 10038–10046.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoffman, R. M. (2009) Tumor-targeting amino acid auxotrophic Salmonella typhimurium. Amino Acids. 37, 509–521.PubMedCrossRefGoogle Scholar
  5. 5.
    Yu, Y. A., Galanis, C., Woo, Y., Chen, N., Zhang, Q., Fong, Y., Szalay, A. A. (2009) Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68. Mol. Cancer Ther. 8, 141–151.PubMedCrossRefGoogle Scholar
  6. 6.
    Yu, Y. A., Timiryasova, T., Zhang, Q., Beltz, R., and Szalay, A. A. (2003) Optical imaging: bacteria, viruses, and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals. Anal. Bioanal. Chem. 377, 964–972.PubMedCrossRefGoogle Scholar
  7. 7.
    Yu, Y. A., Zhang, Q, and Szalay, A. A. (2008) Establishment and characterization of conditions required for tumor colonization by intravenously delivered bacteria. Biotechnol Bioeng. 100, 567–578.PubMedCrossRefGoogle Scholar
  8. 8.
    Kelly, K., Brader, P., Woo, Y., Li, S., Chen, N., Yu, Y. A., Szalay, A. A., and Fong, Y. (2009) Real-time intraoperative detection of melanoma lymph node metastases using recombinant vaccinia virus GLV-1h68 in an immunocompetent animal model. Int. J. Cancer. 124, 911–918.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen, N., Zhang, Q., Yu, Y. A., Stritzker, J., Brader, P., Schirbel, A., Samnick, S., Serganova, I., Blasberg, R., Fong, Y., Szalay, A. A. (2009) A novel recombinant vaccinia virus expressing the human norepinephrine transporter retains oncolytic potential and facilitates deep-tissue imaging. Mol. Med. 15, 144–151.PubMedCrossRefGoogle Scholar
  10. 10.
    Brader, P., Kelly, K. J., Chen, N., Yu, Y. A., Zhang, Q., Zanzonico, P., Burnazi, E. M., Ghani, R. E., Serganova, I., Hricak, H., Szalay, A. A., Fong, Y., Blasberg, R. G. (2009) Imaging a genetically engineered oncolytic vaccinia virus (GLV-1h99) using a human norepinephrine transporter reporter gene. Clin. Cancer Res. 15, 3791–3801.PubMedCrossRefGoogle Scholar
  11. 11.
    Brader, P., Stritzker, J., Riedl, C. C., Zanzonico, P., Cai, S., Burnazi, E. M., Ghani, E. R., Hricak, H., Szalay, A. A., Fong, Y., Blasberg, R. (2008) Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin. Cancer Res. 14, 2295–2302.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, Y., Yu, Y. A., Shabahang, S., Wang, G., and Szalay, A. A. (2002) Renilla luciferase-Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals. Mol. Genet. Genomics. 268, 160–168.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang, Q., Liang, C., Yu, Y. A., Chen, N., Dandekar, T., Szalay, A. A. (2009) The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation. Mol. Genet. Genomics. 282, 417–435.Google Scholar
  14. 14.
    Voisey, C. R., and Marincs, F. (1998) Elimination of internal restriction enzyme sites from a bacterial luminescence (luxCDABE) operon. Biotechniques 24, 56–58.Google Scholar
  15. 15.
    Sorensen, M., Lippuner, C., Kaiser, T., Misslitz, A., Aebischer, T., Bumann, D. (2003) Rapid maturing red fluorescent protein variants with strongly enhanced brightness in bacteria. FEBS Lett. 552, 110–114.PubMedCrossRefGoogle Scholar
  16. 16.
    Joklik, W. K. (1962) The purification of four strains of poxvirus. Virol. 18, 9–18.CrossRefGoogle Scholar
  17. 17.
    Weibel, S., Stritzker, J., Eck, M., Goebel, W., Szalay, A. A. (2008) Colonization of experimental murine breast tumors by Escherichia coli K-12 significantly alters the tumor microenvironment. Cell Microbiol. 10, 1235–1248.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin, S. F., Price, D. L., Chen, C. H., Brader, P., Li, S., Gonzalez, L., Zhang, Q., Yu, Y. A., Chen, N., Szalay, A. A., Fong, Y., Wong, R. J. (2008) Oncolytic vaccinia virotherapy of anaplastic thyroid cancer in vivo. J Clin Endocrinol. Metab. 93, 4403–4407.PubMedCrossRefGoogle Scholar
  19. 19.
    Yu, Z., Li, S., Brader, P., Chen, N., Yu, Y. A., Zhang, Q., Szalay, A. A., Fong, Y., Wong, R. J. (2009) Oncolytic vaccinia therapy of squamous cell carcinoma. Mol. Cancer. 8, 45.CrossRefGoogle Scholar
  20. 20.
    Kelly, K., Woo, Y., Brader, P., Yu, Z., Riedl, C., Lin, S. F., Chen, N., Yu, Y. A., Rusch, V. W., Szalay, A. A., and Fong, Y. (2008) Novel oncolytic agent GLV-1h68 is effective against malignant pleural mesothelioma. Hum. Gene Ther. 19, 774–782.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoffman, R. M. (2005) The multiple uses of fluorescent proteins to visualize cancers in vivo. Nat. Rev. Cancer 5, 794–806.Google Scholar
  22. 22.
    Hoffman, R. M. and Yang, M. (2006) Whole-body imaging with fluorescent proteins. Nat. Protoc. 1, 1429–1438.Google Scholar
  23. 23.
    Hoffman, R. M. (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest. New Drugs 17, 343–359.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yong A. Yu
    • 1
  • Stephanie Weibel
    • 2
  • Aladar A. Szalay
    • 3
    • 4
  1. 1.Genelux Corporation, San Diego Science CenterSan DiegoUSA
  2. 2.Department of Biochemistry, BiocenterUniversity of WuezburgWuezburgGermany
  3. 3.Rudolf-Virchow-Center, DFG-Research Center for Experimental BiomedicineUniversity of WuerzburgWuerzburgGermany
  4. 4.Genelux Corporation, San Diego Science CenterSan DiegoUSA

Personalised recommendations