Passive and Electrically Actuated Solid-State Nanopores for Sensing and Manipulating DNA

  • Zhijun Jiang
  • Mirna Mihovilovic
  • Erin Teich
  • Derek SteinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 870)


Solid-state nanopores have emerged as powerful new tools for electrically characterizing single DNA molecules. When DNA molecules are made to rapidly translocate a nanopore by electrophoresis, the resulting ionic current blockage provides information about the molecular length and folding conformation. A solid-state nanopore can also be integrated with nanofabricated actuators and sensors, such as an embedded gate electrode or transverse tunneling electrodes, to enhance its functionality. Here we describe detailed methods for fabricating passive solid-state nanopores and using them to detect DNA translocations. We also describe procedures for integrating electrodes into the nanopore membrane in order to create an electrically active structure. Finally, we describe how to modulate the ionic conductance through a pore whose inner surface is surrounded by an embedded annular gate electrode.

Key words

Solid-state Nanopore Fabrication DNA Sensing Single-molecule Electrode Integrated 


  1. 1.
    Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215CrossRefGoogle Scholar
  2. 2.
    Branton D et al (2008) The potential and challenges of nanopore sequencing. Nature Biotechnol 26:1146–1153CrossRefGoogle Scholar
  3. 3.
    Clarke J, Wu H, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270CrossRefGoogle Scholar
  4. 4.
    Derrington IM, Butler TZ et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci U S A 107:16060–16065CrossRefGoogle Scholar
  5. 5.
    Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometer length scales. Nature 412:166–169CrossRefGoogle Scholar
  6. 6.
    Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of soli-state nanopores with single-nanometre precision. Nat Mater 2:537–540CrossRefGoogle Scholar
  7. 7.
    Branton D, Golovchenko JA, Denison TJ (2003) Molecular and atomic scale evaluation of biopolymers. US Patent Specification 6627067Google Scholar
  8. 8.
    Li J, Stein D, Schurmann GM, King GM, Golovchenko J, Branton D, Aziz M (2007) Solid state molecular probe device. US Patent Specification 7258838Google Scholar
  9. 9.
    Zwolak M, Di Ventra M (2005) Electronic signature of DNA nucleotides via transverse transport. Nano Lett 5:421–424CrossRefGoogle Scholar
  10. 10.
    Lagerqvist J, Zwolak M, Di Ventra M (2006) Fast DNA sequencing via transverse electronic transport. Nano Lett 6:779–782CrossRefGoogle Scholar
  11. 11.
    He J, Lin L, Zhang P, Spadola Q, Xi Z, Fu Q, Lindsay S (2008) Transverse tunneling through DNA hydrogen bonded to an electrode. Nano Lett 8:2530–2534CrossRefGoogle Scholar
  12. 12.
    Keyser UF, Koeleman BN et al (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2:473–477CrossRefGoogle Scholar
  13. 13.
    Peng H, Ling XS (2009) Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology 20:185101CrossRefGoogle Scholar
  14. 14.
    Olasagasti F, Lieberman KR et al (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nature Nanotech 5:798–806CrossRefGoogle Scholar
  15. 15.
    Gershow M, Golovchenko JA (2007) Recapturing and trapping single molecules with a solid-state nanopore. Nature Nanotech 2:775–779CrossRefGoogle Scholar
  16. 16.
    Stein D (2007) Molecular ping-pong. Nature Nanotech 19:741–742CrossRefGoogle Scholar
  17. 17.
    Polonsky S, Rossnagel S, Stolovitzky G (2007) Nanopore in metal-dielectric sandwich for DNA position control. Appl Phys Lett 91:153103CrossRefGoogle Scholar
  18. 18.
    Jiang Z, Stein D (2011) Charge regulation in nanopore ionic field-effect transistors. Phys Rev E Stat Nonlin Soft Matter Phys 83:031203CrossRefGoogle Scholar
  19. 19.
    Jiang Z, Mihovilovic M, Chan J, Stein D (2010) Fabrication of nanopores with embedded annular electrodes and transverse CNT electrodes. J Phys Condens Matter 22:454114CrossRefGoogle Scholar
  20. 20.
    Gracheva ME, Xiong A, Aksimentiev A, Schulten K, Timp G, Leburton J-P (2006) Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology 17:622–633CrossRefGoogle Scholar
  21. 21.
    Krapf D, Wu MY, Smeets RMM, Zandbergen HW, Dekker C, Lemay SG (2006) Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett 6:105–109CrossRefGoogle Scholar
  22. 22.
    Sze SM (2002) Semiconductor devices, physics and technology, 2nd edn. Wiley, New YorkGoogle Scholar
  23. 23.
    Campbell SA (2001) The science and engineering of microelectronic fabrication, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  24. 24.
    Jiang Z, Stein D (2010) Electro-fluidic gating of a chemically reactive surface. Langmuir 26:8161–8173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zhijun Jiang
    • 1
  • Mirna Mihovilovic
    • 1
  • Erin Teich
    • 1
  • Derek Stein
    • 1
    Email author
  1. 1.Department of PhysicsBrown UniversityProvidenceUSA

Personalised recommendations