Preparation of Pichia pastoris Expression Plasmids

  • Christel Logez
  • Fatima Alkhalfioui
  • Bernadette Byrne
  • Renaud Wagner
Part of the Methods in Molecular Biology book series (MIMB, volume 866)


When planning any heterologous expression experiment, the very first critical step is related to the design of the overall strategy, hence to the selection of the most adapted expression vector. The very flexible Pichia pastoris system offers a broad range of possibilities for the production of secreted, endogenous or membrane proteins thanks to a combination of various plasmid backbones, selection markers, promoters and fusion sequences introduced into dedicated host strains. The present chapter provides some guidelines on the choice of expression vectors and expression strategies. It also brings the reader a complete toolbox from which plasmids and fusion sequences can be picked and assembled to set up appropriate expression vectors. Finally, it provides standard starting protocols for the preparation of the selected plasmids and their use for host strain transformation.

Key words

Plasmid Expression Purification/detection tag Promoter Pichia pastoris cell strains 


  1. 1.
    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66PubMedCrossRefGoogle Scholar
  2. 2.
    Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332PubMedCrossRefGoogle Scholar
  3. 3.
    Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression ­system. Yeast 22:249–270PubMedCrossRefGoogle Scholar
  4. 4.
    Alkhalfioui F, Logez C, Bornert O, Wagner R (2011) Expression systems: Pichia pastoris. In: Production of membrane proteins–strategies for expression and isolation (ed A.S. Robinson) Wiley-VCH Verlag GmbH & Co, DOI: 10.1002/9783527634521Google Scholar
  5. 5.
    Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5:3376–3385PubMedGoogle Scholar
  6. 6.
    Lee CC, Williams TG, Wong DWS, Robertson GH (2005) An episomal expression vector for screening mutant gene libraries in Pichia pastoris. Plasmid 54:80–85PubMedCrossRefGoogle Scholar
  7. 7.
    Hong IP, Lee SJ, Kim YS, Choi SG (2007) Recombinant expression of human cathelicidin (hCAP18/LL-37) in Pichia pastoris. Biotechnol Lett 29:73–78PubMedCrossRefGoogle Scholar
  8. 8.
    Sandstrom AG, Engstrom K, Nyhlen J, Kasrayan A, Backvall JE (2009) Directed evolution of Candida antarctica lipase A using an episomal replicating yeast plasmid. Protein Eng Des Sel 22:413–420PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang AL, Luo JX, Zhang TY, Pan YW, Tan YH, Fu CY, Tu FZ (2009) Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep 36:1611–1619PubMedCrossRefGoogle Scholar
  10. 10.
    Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Fact 5:39PubMedCrossRefGoogle Scholar
  11. 11.
    Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A (2008) Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 36:e76PubMedCrossRefGoogle Scholar
  12. 12.
    Cos O, Ramón R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17PubMedCrossRefGoogle Scholar
  13. 13.
    Fantoni A, Bill RM, Gustafsson L, Hedfalk K (2007) Improved yields of full-length functional human FGF1 can be achieved using the methylotrophic yeast Pichia pastoris. Protein Expr Purif 52:31–39PubMedCrossRefGoogle Scholar
  14. 14.
    Delroisse JM, Dannau M, Gilsoul JJ, El Mejdoub T, Destain J, Portetelle D, Thonart P, Haubruge E, Vandenbol M (2005) Expression of a synthetic gene encoding a Tribolium castaneum carboxylesterase in Pichia pastoris. Protein Expr Purif 42:286–294PubMedCrossRefGoogle Scholar
  15. 15.
    Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138PubMedCrossRefGoogle Scholar
  16. 16.
    Weiss HM, Haase W, Michel H, Reilander H (1995) Expression of functional mouse 5-HT5A serotonin receptor in the methylotrophic yeast Pichia pastoris: pharmacological characterization and localization. FEBS Lett 377:451–456PubMedCrossRefGoogle Scholar
  17. 17.
    Grunewald S, Haase W, Molsberger E, Michel H, Reilander H (2004) Production of the human D2S receptor in the methylotrophic yeast P. pastoris. Receptors Channels 10:37–50PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer G, Kosinska-Eriksson U, Aponte-Santamaria C, Palmgren M, Geijer C, Hedfalk K, Hohmann S, de Groot BL, Neutze R, Lindkvist-Petersson K (2009) Crystal structure of a yeast aquaporin at 1.15 Å reveals a novel gating mechanism. PLoS Biol 7:e1000130PubMedCrossRefGoogle Scholar
  19. 19.
    Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694PubMedCrossRefGoogle Scholar
  20. 20.
    Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533PubMedGoogle Scholar
  21. 21.
    Woo JH, Liu YY, Mathias A, Stavrou S, Wang Z, Thompson J, Neville DM Jr (2002) Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr Purif 25:270–282PubMedCrossRefGoogle Scholar
  22. 22.
    Sinclair G, Choy FY (2002) Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 26:96–105PubMedCrossRefGoogle Scholar
  23. 23.
    Tull D, Gottschalk TE, Svendsen I, Kramhøft B, Phillipson BA, Bisgård-Frantzen H, Olsen O, Svensson B (2001) Extensive N-glycosylation reduces the thermal stability of a recombinant alkalophilic bacillus alpha-amylase produced in Pichia pastoris. Protein Expr Purif 21:13–23PubMedCrossRefGoogle Scholar
  24. 24.
    Boettner M, Steffens C, von Mering C, Bork P, Stahl U, Lang C (2007) Sequence-based factors influencing the expression of heterologous genes in the yeast Pichia pastoris – a comparative view on 79 human genes. J Biotechnol 130:1–10PubMedCrossRefGoogle Scholar
  25. 25.
    De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–569PubMedCrossRefGoogle Scholar
  26. 26.
    Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392PubMedCrossRefGoogle Scholar
  27. 27.
    Pla IA, Damasceno LM, Vannelli T, Ritter G, Batt CA, Shuler ML (2006) Evaluation of Mut+ and MutS Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration. Biotechnol Prog 22:881–888PubMedCrossRefGoogle Scholar
  28. 28.
    André N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15:1115–1126PubMedCrossRefGoogle Scholar
  29. 29.
    Ellis SB, Brust PF, Koutz PJ, Waters AF, Harpold MM, Gingeras TR (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol 5:1111–1121PubMedGoogle Scholar
  30. 30.
    Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K (2000) Addition of oleic acid increases expression of recombinant human serum albumin by the AOX2 promoter in Pichia pastoris. J Biosci Bioeng 89:479–484PubMedCrossRefGoogle Scholar
  31. 31.
    Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44PubMedCrossRefGoogle Scholar
  32. 32.
    Shen SG, Sulter G, Jeffries TW, Cregg JM (1998) A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216:93–102PubMedCrossRefGoogle Scholar
  33. 33.
    Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR (1987) Expression of the lacZ gene from two methanol regulated promoters in Pichia pastoris. Nucleic Acids Res 15:3859–3876PubMedCrossRefGoogle Scholar
  34. 34.
    Menendez J, Valdes I, Cabrera N (2003) The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast 20:1097–1108PubMedCrossRefGoogle Scholar
  35. 35.
    Sears IB, O’Connor J, Rossanese OW, Glick BS (1998) A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 14:783–790PubMedCrossRefGoogle Scholar
  36. 36.
    Ahn J, Hong J, Lee H, Park M, Lee E, Kim C, Choi E, Jung J, Lee H (2007) Translation elongation factor 1-alpha gene from Pichia pastoris: molecular cloning, sequence, and use of its promoter. Appl Microbiol Biotechnol 74:601–608PubMedCrossRefGoogle Scholar
  37. 37.
    Ahn J, Hong J, Park M, Lee H, Lee E, Kim C, Lee J, Choi E, Jung J, Lee H (2009) Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Appl Environ Microbiol 75:3528–3534PubMedCrossRefGoogle Scholar
  38. 38.
    Liu H, Tan XQ, Russell KA, Veenhuis M, Cregg JM (1995) PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane-protein involved in protein import. J Biol Chem 270:10940–10951PubMedCrossRefGoogle Scholar
  39. 39.
    Hashimoto Y, Koyabu N, Imoto T (1998) Effects of signal sequences on the secretion of hen lysozyme by yeast, construction of four secretion cassette vectors. Protein Eng 11:75–77PubMedCrossRefGoogle Scholar
  40. 40.
    Payne WE, Gannon PM, Kaiser CA (1995) An inducible acid phosphatase from the yeast Pichia pastoris – characterisation of the gene and its product. Gene 163:19–26PubMedCrossRefGoogle Scholar
  41. 41.
    Paifer E, Margolles E, Cremata J, Montesino R, Herrera L, Delgado JM (1994) Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast 10:1415–1419PubMedCrossRefGoogle Scholar
  42. 42.
    Raemaekers RJM, de Muro L, Gatehouse JA, Fordham-Skelton AP (1999) Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris – correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur J Biochem 265:394–403PubMedCrossRefGoogle Scholar
  43. 43.
    Kato S, Ishibashi M, Tatsuda D, Tokunaga H, Tokunaga M (2001) Efficient expression, purification and characterization of mouse salivary alpha-amylase secreted from methylotrophic yeast Pichia pastoris. Yeast 18:643–655PubMedCrossRefGoogle Scholar
  44. 44.
    Tokunaga M, Kawamura A, Omor A, Hishinuma F (1992) Structure of yeast pGKL 128-kDa killer-toxin secretion signal sequence: processing of the 128-kDa killer-toxin-secretion-signal – α-amylase fusion protein. Eur J Biochem 203:415–423PubMedCrossRefGoogle Scholar
  45. 45.
    Oka C, Tanaka M, Muraki M, Harata K, Suzuki K, Jigami Y (1999) Human lysozyme secretion increased by alpha-factor pro-sequence in Pichia pastoris. Biosci Biotechnol Biochem 63:1977–1983PubMedCrossRefGoogle Scholar
  46. 46.
    Cregg JM, Madden KR (1987) Development of yeast transformation systems and construction of methanol-utilization-defective mutants of Pichia pastoris gene disruption. Biol Res Yeasts, II, pp 1–18Google Scholar
  47. 47.
    Cregg JM, Madden KR (1989) Use of site-specific recombination to regenerate selectable markers. Mol Gen Genet 219:320–323PubMedCrossRefGoogle Scholar
  48. 48.
    White CE, Hunter MJ, Meininger DP, White LR, Komives EA (1995) Large-scale expression, purification and characterization of small fragments of thrombomodulin: the roles of the sixth domain and of methionine 388. Protein Eng 8:1177–1187PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+business Media, LLC 2012

Authors and Affiliations

  • Christel Logez
    • 1
  • Fatima Alkhalfioui
    • 1
  • Bernadette Byrne
    • 2
  • Renaud Wagner
    • 1
  1. 1.Département Récepteurs et Protéines MembranairesCentre National de la Recherche Scientifique, Ecole Supérieure de Biotechnologie de StrasbourgIllkirchFrance
  2. 2.Division of Molecular BiosciencesImperial College LondonLondonUK

Personalised recommendations