Which Yeast Species Shall I Choose? Saccharomyces cerevisiae Versus Pichia pastoris (Review)

  • Richard A. J. DarbyEmail author
  • Stephanie P. Cartwright
  • Marvin V. Dilworth
  • Roslyn M. Bill
Part of the Methods in Molecular Biology book series (MIMB, volume 866)


Having decided on yeast as a production host, the choice of species is often the first question any researcher new to the field will ask. With over 500 known species of yeast to date, this could pose a significant challenge. However, in reality, only very few species of yeast have been employed as host organisms for the production of recombinant proteins. The two most widely used, Saccharomyces cerevisiae and Pichia pastoris, are compared and contrasted here.

Key words

Yeast Host cell Recombinant protein production 


  1. 1.
    Bill RM (2001) Yeast – a panacea for the structure-function analysis of membrane proteins? Curr Genet 40:157–171PubMedCrossRefGoogle Scholar
  2. 2.
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546–567PubMedCrossRefGoogle Scholar
  3. 3.
    De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, de Peer YV, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566PubMedCrossRefGoogle Scholar
  4. 4.
    Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29PubMedCrossRefGoogle Scholar
  5. 5.
    Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17PubMedCrossRefGoogle Scholar
  7. 7.
    Jigami Y (2008) Yeast glycobiology and its application. Biosci Biotechnol Biochem 72:637–648PubMedCrossRefGoogle Scholar
  8. 8.
    Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414PubMedCrossRefGoogle Scholar
  9. 9.
    Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris – derived proteins. Biotechnol Appl Biochem 30:193–200PubMedGoogle Scholar
  10. 10.
    Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang YW, Rios S, Bobrowicz P, Stadheim TA, Li HJ, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443PubMedCrossRefGoogle Scholar
  11. 11.
    Kjeldsen T, Ludvigsen S, Diers I, Balschmidt P, Sørensen AR, Kaarsholm NC (2002) Engineering-enhanced protein secretory expression in yeast with application to insulin. J Biol Chem 277:18245–18248PubMedCrossRefGoogle Scholar
  12. 12.
    Andre FE, Safary A (1987) Summary of clinical findings on engerix-b, a genetically engineered yeast-derived Hepatitis-B vaccine. Postgrad Med J 63:169–178PubMedCrossRefGoogle Scholar
  13. 13.
    Siddiqui MAA, Perry CM (2006) Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil (R)): profile report. BioDrugs 20:313–316PubMedCrossRefGoogle Scholar
  14. 14.
    Siddiqui MAA, Perry CM (2006) Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil (R)). Drugs 66:1263–1271PubMedCrossRefGoogle Scholar
  15. 15.
    Gasser B, Mattanovich D (2007) Antibody production with yeasts and filamentous fungi: on the road to large scale? Biotechnol Lett 29:201–212PubMedCrossRefGoogle Scholar
  16. 16.
    Hackel BJ, Huang DG, Buboz JC, Wang XX, Shusta EV (2006) Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res 23:790–797PubMedCrossRefGoogle Scholar
  17. 17.
    Evans L, Hughes M, Waters J, Cameron J, Dodsworth N, Tooth D, Greenfield A, Sleep D (2010) The production, characterisation and enhanced pharmacokinetics of scFv-albumin fusions expressed in Saccharomyces cerevisiae. Protein Expr Purif 73:113–124PubMedCrossRefGoogle Scholar
  18. 18.
    Frenken LGJ, van der Linden RHJ, Hermans PWJJ, Bos JW, Ruuls RC, de Geus B, Verrips CT (2000) Isolation of antigen specific Llama V-HH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78:11–21PubMedCrossRefGoogle Scholar
  19. 19.
    Edqvist J, Keranen S, Penttila M, Straby KB, Knowles JKC (1991) Production of functional Igm Fab fragments by Saccharomyces cerevisiae. J Biotechnol 20:291–300PubMedCrossRefGoogle Scholar
  20. 20.
    Liitti S, Matikainen MT, Scheinin M, Glumoff T, Goldman A (2001) Immunoaffinity purification and reconstitution of human alpha(2)-adrenergic receptor subtype C2 into phospholipid vesicles. Protein Expr Purif 22:1–10PubMedCrossRefGoogle Scholar
  21. 21.
    Huang HJ, Liao CF, Yang BC, Kuo TT (1992) Functional expression of rat M5 muscarinic acetylcholine-receptor in yeast. Biochem Biophys Res Commun 182:1180–1186PubMedCrossRefGoogle Scholar
  22. 22.
    Price LA, Strnad J, Pausch MH, Hadcock JR (1996) Pharmacological characterization of the rat A(2a) adenosine receptor functionally coupled to the yeast pheromone response pathway. Mol Pharmacol 50:829–837PubMedGoogle Scholar
  23. 23.
    Joubert O, Nehme R, Bidet M, Mus-Veteau I (2010) Heterologous expression of human membrane receptors in the yeast Saccharomyces cerevisiae, heterologous expression of membrane proteins. Methods Mol Biol 601:87–103Google Scholar
  24. 24.
    Ferndahl C, Bonander N, Logez C, Wagner R, Gustafsson L, Larsson C, Hedfalk K, Darby RAJ, Bill RM (2010) Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory. Microb Cell Fact 9:47PubMedCrossRefGoogle Scholar
  25. 25.
    Kapat A, Jaakola VP, Heimo H, Liitti S, Heikinheimo P, Glumoff T, Goldman A (2000) Production and purification of recombinant human alpha 2C2 adrenergic receptor using Saccharomyces cerevisiae. Bioseparation 9:167–172PubMedCrossRefGoogle Scholar
  26. 26.
    Duman JG, Miele RG, Liang H, Grella DK, Sim KL, Castellino FJ, Bretthauer RK (1998) O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol Appl Biochem 28:39–45PubMedGoogle Scholar
  27. 27.
    Miele RG, Castellino FJ, Bretthauer RK (1997) Characterization of the acidic oligosaccharides assembled on the Pichia pastoris-expressed recombinant kringle 2 domain of human tissue-type plasminogen activator. Biotechnol Appl Biochem 26:79–83PubMedGoogle Scholar
  28. 28.
    Barnett JA, Barnett L (2011) Yeast research: a historical overview. ASM, Herndon, VAGoogle Scholar
  29. 29.
    Treco DA, Lundblad V (2001) Preparation of yeast media. Curr Protoc Mol Biol Chapter 13, Unit13.1Google Scholar
  30. 30.
    Curran BP, Bugeja V (2006) Basic investigations in Saccharomyces cerevisiae. Methods Mol Biol 313:1–13PubMedGoogle Scholar
  31. 31.
    Bonander N, Ferndahl C, Mostad P, Wilks MD, Chang C, Showe L, Gustafsson L, Larsson C, Bill RM (2008) Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. BMC Genomics 9:365PubMedCrossRefGoogle Scholar
  32. 32.
    Verduyn C, Zomerdijk TPL, Dijken JP, Scheffers WA (1984) Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19:181–185CrossRefGoogle Scholar
  33. 33.
    Bonander N, Hedfalk K, Larsson C, Mostad P, Chang C, Gustafsson L, Bill RM (2005) Design of improved membrane protein production experiments: quantitation of the host response. Protein Sci 14:1729–1740PubMedCrossRefGoogle Scholar
  34. 34.
    Bawa Z, Bland CE, Bonander N, Bora N, Cartwright SP, Clare M, Conner MT, Darby RA, Dilworth MV, Holmes WJ, Jamshad M, Routledge SJ, Gross SR, Bill RM (2011) Understanding the yeast host cell response to recombinant membrane protein production. Biochem Soc Trans 39:719–723PubMedGoogle Scholar
  35. 35.
    Wang H, Prorok M, Bretthauer RK, Castellino FJ (1997) Serine-578 is a major phosphorylation locus in human plasma plasminogen. Biochemistry 36:8100–8106PubMedCrossRefGoogle Scholar
  36. 36.
    Ren J, Castellino FJ, Bretthauer RK (1997) Purification and properties of alpha-mannosidase II from Golgi-like membranes of baculovirus-infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Biochem J 324:951–956PubMedGoogle Scholar
  37. 37.
    Bonander N, Darby RAJ, Grgic L, Bora N, Wen J, Brogna S, Poyner DR, O’Neill MAA, Bill RM (2009) Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microb Cell Fact 8:10PubMedCrossRefGoogle Scholar
  38. 38.
    Schneider JC, Guarente L (1991) Vectors for expression of cloned genes in yeast: regulation, overproduction and underproduction. Methods Enzymol 194:373–388PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang Z, Moo-Young M, Chisti Y (1996) Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnol Adv 14:401–435PubMedCrossRefGoogle Scholar
  40. 40.
    Holmes WJ, Darby RAJ, Wilks MDB, Smith R, Bill RM (2009) Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microb Cell Fact 8:35PubMedCrossRefGoogle Scholar
  41. 41.
    Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology 9:455–460PubMedCrossRefGoogle Scholar
  42. 42.
    Clare JJ, Romanos MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Henwood CA (1991) Production of mouse epidermal growth-factor in yeast – high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105:205–212PubMedCrossRefGoogle Scholar
  43. 43.
    Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270PubMedCrossRefGoogle Scholar
  44. 44.
    Rosenberg MF, Bikadi Z, Chan J, Liu XP, Ni ZL, Cai XK, Ford RC, Mao QC (2010) The human breast cancer resistance protein (BCRP/ABCG2) shows conformational changes with mitoxantrone. Structure 18:482–493PubMedCrossRefGoogle Scholar
  45. 45.
    Urbatsch IL, Wilke-Mounts S, Gimi K, Senior AE (2001) Purification and characterization of n-glycosylation mutant mouse and human p-glycoproteins expressed in Pichia pastoris cells. Arch Biochem Biophys 388:171–177PubMedCrossRefGoogle Scholar
  46. 46.
    Jamshad M, Rajesh S, Stamataki Z, McKeating JA, Dafforn T, Overduin M, Bill RM (2008) Structural characterization of recombinant human CD81 produced in Pichia pastoris. Protein Expr Purif 57:206–216PubMedCrossRefGoogle Scholar
  47. 47.
    Grunewald S, Haase W, Molsberger E, Michel H, Reilander H (2004) Production of the human D-2S receptor in the methylotrophic yeast P. pastoris. Receptors Channels 10:37–50PubMedCrossRefGoogle Scholar
  48. 48.
    Shi XL, Feng MQ, Shi J, Shi ZHA, Zhong JA, Zhou P (2007) High-level expression and purification of recombinant human catalase in Pichia pastoris. Protein Expr Purif 54:24–29PubMedCrossRefGoogle Scholar
  49. 49.
    Ogunjimi AA, Chandler JM, Gooding CM, Recinos A, Choudary PV (1999) High-level secretory expression of immunologically active intact antibody from the yeast Pichia pastoris. Biotechnol Lett 21:561–567CrossRefGoogle Scholar
  50. 50.
    Andre N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15:1115–1126PubMedCrossRefGoogle Scholar
  51. 51.
    Cregg JM, Cereghino JL, Shi JY, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52PubMedCrossRefGoogle Scholar
  52. 52.
    Otterstedt K, Larsson C, Bill RM, Stahlberg A, Boles E, Hohmann S, Gustafsson L (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:532–537PubMedCrossRefGoogle Scholar
  53. 53.
    Singh S, Hedley D, Kara E, Gras A, Iwata S, Ruprecht J, Strange PG, Byrne B (2010) A purified C-terminally truncated human adenosine A2A receptor construct is functionally stable and degradation resistant. Protein Expr Purif 74:80–87PubMedCrossRefGoogle Scholar
  54. 54.
    Li PZ, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124PubMedCrossRefGoogle Scholar
  55. 55.
    Yinliang C, Cino J, Hart G, Freedman D, White C, Komives EA (1997) High protein expression in fermentation of recombinant Pichia pastoris by a fed-batch process. Process Biochem 32:107–111CrossRefGoogle Scholar
  56. 56.
    Jin H, Liu G, Ye X, Duan Z, Li Z, Shi Z (2010) Enhanced porcine interferon-α production by recombinant Pichia pastoris with a combinational control strategy of low induction temperature and high dissolved oxygen concentration. Biochem Eng J 52:91–98CrossRefGoogle Scholar
  57. 57.
    Fraser NJ (2006) Expression and functional purification of a glycosylation deficient version of the human adenosine 2a receptor for structural studies. Protein Expr Purif 49:129–137PubMedCrossRefGoogle Scholar
  58. 58.
    Cos O, Ramon R, Montesinos JL, Valero F (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Fact 5:17PubMedCrossRefGoogle Scholar
  59. 59.
    Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (1997) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37–44PubMedCrossRefGoogle Scholar
  60. 60.
    Kim SJ, Lee JA, Kim YH, Song BK (2009) optimization of the functional expression of coprinus cinereus peroxidase in Pichia pastoris by varying the host and promoter. J Microbiol Biotechnol 19:966–971PubMedCrossRefGoogle Scholar
  61. 61.
    Resina D, Cos O, Ferrer P, Valero F (2005) Developing high cell density fed-batch cultivation strategies for heterologous protein production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. Biotechnol Bioeng 91:760–767PubMedCrossRefGoogle Scholar
  62. 62.
    Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138PubMedCrossRefGoogle Scholar
  63. 63.
    Dale C, Allen A, Fogerty S (1999) Pichia pastoris: a eukaryotic system for the large-scale production of biopharmaceuticals. Biopharm 12:36–40Google Scholar
  64. 64.
    Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Nat Biotechnol 11:905–910CrossRefGoogle Scholar
  65. 65.
    Mattanovich D, Callewaert N, Rouze P, Lin YC, Graf A, Redl A, Tiels P, Gasser B, De Schutter K (2009) Open access to sequence: browsing the Pichia pastoris genome. Microb Cell Fact 8:53PubMedCrossRefGoogle Scholar
  66. 66.
    Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia-pastoris as a host system for transformations. Mol Cell Biol 5:3376–3385PubMedGoogle Scholar
  67. 67.
    Lee CC, Williams TG, Wong DWS, Robertson GH (2005) An episomal expression vector for screening mutant gene libraries in Pichia pastoris. Plasmid 54:80–85PubMedCrossRefGoogle Scholar
  68. 68.
    Choi SG, Hong IP, Anderson S (2006) Evaluation of a new episomal vector based on the GAP promoter for structural genomics in Pichia pastoris. J Microbiol Biotechnol 16:1362–1368Google Scholar

Copyright information

© Springer Science+business Media, LLC 2012

Authors and Affiliations

  • Richard A. J. Darby
    • 1
    Email author
  • Stephanie P. Cartwright
    • 2
  • Marvin V. Dilworth
    • 2
  • Roslyn M. Bill
    • 2
  1. 1.Nuffield Department of Clinical Laboratory SciencesJohn Radcliffe Hospital, University of OxfordOxfordUK
  2. 2.School of Life & Health Sciences and Aston Research Centre for Healthy AgeingAston UniversityBirminghamUK

Personalised recommendations