Optimising Yeast as a Host for Recombinant Protein Production (Review)

Part of the Methods in Molecular Biology book series (MIMB, volume 866)


Having access to suitably stable, functional recombinant protein samples underpins diverse academic and industrial research efforts to understand the workings of the cell in health and disease. Synthesising a protein in recombinant host cells typically allows the isolation of the pure protein in quantities much higher than those found in the protein’s native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to the native human source cells of many proteins of interest, while also being quick, easy, and cheap to grow and process. Even in these cells the production of some proteins can be plagued by low functional yields. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast cell factories. In this chapter, we provide an overview of the opportunities available to improve yeast as a host system for recombinant protein production.

Key words

Recombinant protein production Yeast Strain engineering Bioprocess control 



This work was supported by the European Commission via contract LSHG-CT-2004-504601 (E-MeP), LSHG-CT-2006-037793 (OptiCryst) and Grant 201924 (EDICT) to RMB. The BBSRC supports bioreactors and a flow microcalorimeter in the RMB Laboratory through an REI award.


  1. 1.
    Bill RM, Henderson PJ, Iwata S, Kunji ER, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340PubMedCrossRefGoogle Scholar
  2. 2.
    Bill RM (2001) Yeast – a panacea for the structure-function analysis of membrane proteins? Curr Genet 40:157–171PubMedCrossRefGoogle Scholar
  3. 3.
    Grisshammer R, Tate CG (1995) Overexpression of integral membrane proteins for structural studies. Q Rev Biophys 28:315–422PubMedCrossRefGoogle Scholar
  4. 4.
    Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont ME, Phizicky EM, Snyder M, Grayhack EJ (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19:2816–2826PubMedCrossRefGoogle Scholar
  5. 5.
    Reilander H, Weiss HM (1998) Production of G-protein-coupled receptors in yeast. Curr Opin Biotechnol 9:510–517PubMedCrossRefGoogle Scholar
  6. 6.
    Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems fron the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546PubMedCrossRefGoogle Scholar
  7. 7.
    Freigassner M, Pichler H, Glieder A (2009) Tuning microbial hosts for membrane protein production. Microb Cell Fact 8:69PubMedCrossRefGoogle Scholar
  8. 8.
    Karlgren S, Pettersson N, Nordlander B, Mathai JC, Brodsky JL, Zeidel ML, Bill RM, Hohmann S (2005) Conditional osmotic stress in yeast: a system to study transport through aquaglyceroporins and osmostress signaling. J Biol Chem 280:7186–7193PubMedCrossRefGoogle Scholar
  9. 9.
    Nyblom M, Oberg F, Lindkvist-Petersson K, Hallgren K, Findlay H, Wikstrom J, Karlsson A, Hansson O, Booth PJ, Bill RM, Neutze R, Hedfalk K (2007) Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 56:110–120PubMedCrossRefGoogle Scholar
  10. 10.
    Jidenko M, Nielsen RC, Sorensen TL, Moller JV, le Maire M, Nissen P, Jaxel C (2005) Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:11687–11691PubMedCrossRefGoogle Scholar
  11. 11.
    Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903PubMedCrossRefGoogle Scholar
  12. 12.
    Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694PubMedCrossRefGoogle Scholar
  13. 13.
    Horsefield R, Norden K, Fellert M, Backmark A, Tornroth-Horsefield S, Terwisscha van Scheltinga AC, Kvassman J, Kjellbom P, Johanson U, Neutze R (2008) High-resolution x-ray structure of human aquaporin 5. Proc Natl Acad Sci USA 105:13327–13332PubMedCrossRefGoogle Scholar
  14. 14.
    De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566PubMedCrossRefGoogle Scholar
  15. 15.
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546, 563–567PubMedCrossRefGoogle Scholar
  16. 16.
    Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246PubMedCrossRefGoogle Scholar
  17. 17.
    Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392PubMedCrossRefGoogle Scholar
  18. 18.
    Kjeldsen T, Ludvigsen S, Diers I, Balschmidt P, Sørensen AR, Kaarsholm NC (2002) Engineering-enhanced protein secretory expression in yeast with application to insulin. J Biol Chem 277:18245–18248PubMedCrossRefGoogle Scholar
  19. 19.
    Siddiqui MAA, Perry CM (2006) Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil (R)). Drugs 66:1263–1271PubMedCrossRefGoogle Scholar
  20. 20.
    Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298PubMedCrossRefGoogle Scholar
  21. 21.
    Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett 482:215–219PubMedCrossRefGoogle Scholar
  22. 22.
    Linares DM, Geertsma ER, Poolman B (2010) Evolved Lactococcus lactis strains for enhanced expression of recombinant membrane proteins. J Mol Biol 401:45–55PubMedCrossRefGoogle Scholar
  23. 23.
    Bonander N, Hedfalk K, Larsson C, Mostad P, Chang C, Gustafsson L, Bill RM (2005) Design of improved membrane protein production experiments: quantitation of the host response. Protein Sci 14:1729–1740PubMedCrossRefGoogle Scholar
  24. 24.
    Griffith DA, Delipala C, Leadsham J, Jarvis SM, Oesterhelt D (2003) A novel yeast expression system for the overproduction of quality-controlled membrane proteins. FEBS Lett 553:45–50PubMedCrossRefGoogle Scholar
  25. 25.
    Bonander N, Bill RM (2009) Relieving the first bottleneck in the drug discovery pipeline: using array technologies to rationalize membrane protein production. Expert Rev Proteomics 6:501–505PubMedCrossRefGoogle Scholar
  26. 26.
    Bonander N, Darby RA, Grgic L, Bora N, Wen J, Brogna S, Poyner DR, O’Neill MA, Bill RM (2009) Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microb Cell Fact 8:10PubMedCrossRefGoogle Scholar
  27. 27.
    Bawa Z, Bland CE, Bonander N, Bora N, Cartwright SP, Clare M, Conner MT, Darby RA, Dilworth MV, Holmes WJ, Jamshad M, Routledge SJ, Gross SR, Bill RM (2011) Understanding the yeast host cell response to recombinant membrane protein production. Biochem Soc Trans 39:1113Google Scholar
  28. 28.
    Santiago TC, Mamoun CB (2003) Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p and Ino4p. J Biol Chem 278:38723–38730PubMedCrossRefGoogle Scholar
  29. 29.
    Jiranek V, Graves JA, Henry SA (1998) Pleiotropic effects of the opi1 regulatory mutation of yeast: its effects on growth and on phospholipid and inositol metabolism. Microbiology 144:2739–2748PubMedCrossRefGoogle Scholar
  30. 30.
    Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY (2010) Genome-scale metabolic model of methylotrophic yeast Pichia pastoris and its use for in silico analysis of heterologous protein production. Biotechnol J 5:705–715PubMedCrossRefGoogle Scholar
  31. 31.
    De Alwis DM, Dutton RL, Scharer J, Moo-Young M (2007) Statistical methods in media optimization for batch and fed-batch animal cell culture. Bioprocess Biosyst Eng 30:107–113PubMedCrossRefGoogle Scholar
  32. 32.
    Stiens LR, Buntemeyer H, Lutkemeyer D, Lehmann J, Bergmann A, Weglohner W (2000) Development of serum-free bioreactor production of recombinant human thyroid stimulating hormone receptor. Biotechnol Prog 16:703–709PubMedCrossRefGoogle Scholar
  33. 33.
    van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G (2010) Optimization of chemically defined cell culture media – replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063PubMedCrossRefGoogle Scholar
  34. 34.
    Andre N, Cherouati N, Prual C, Steffan T, Zeder-Lutz G, Magnin T, Pattus F, Michel H, Wagner R, Reinhart C (2006) Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen. Protein Sci 15:1115–1126PubMedCrossRefGoogle Scholar
  35. 35.
    Bonander N, Jamshad M, Hu K, Farquhar MJ, Stamataki Z, Balfe P, McKeating JA, Bill RM (2011) Structural characterization of CD81-Claudin-1 hepatitis C virus receptor complexes. Biochem Soc Trans 39:537–540PubMedCrossRefGoogle Scholar
  36. 36.
    Holmes WJ, Darby RA, Wilks MD, Smith R, Bill RM (2009) Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microb Cell Fact 8:35PubMedCrossRefGoogle Scholar
  37. 37.
    Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517PubMedCrossRefGoogle Scholar
  38. 38.
    Abelovska L, Bujdos M, Kubova J, Petrezselyova S, Nosek J, Tomaska L (2007) Comparison of element levels in minimal and complex yeast media. Can J Microbiol 53:533–535PubMedCrossRefGoogle Scholar
  39. 39.
    Burkholder PR, McVeigh I, Moyer D (1944) Studies on some growth factors of yeasts. J Bacteriol 48:385–391PubMedGoogle Scholar
  40. 40.
    Wickerham LJ (1946) A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts. J Bacteriol 52:293–301Google Scholar
  41. 41.
    Wickerman LJ (1951) Taxonomy of yeasts. US Dept Agri Tech Bull 1029:1–56Google Scholar
  42. 42.
    Henricsson C, de Jesus Ferreira MC, Hedfalk K, Elbing K, Larsson C, Bill RM, Norbeck J, Hohmann S, Gustafsson L (2005) Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations. Appl Environ Microbiol 71:6185–6192PubMedCrossRefGoogle Scholar
  43. 43.
    Ferndahl C, Bonander N, Logez C, Wagner R, Gustafsson L, Larsson C, Hedfalk K, Darby RA, Bill RM (2010) Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory. Microb Cell Fact 9:47PubMedCrossRefGoogle Scholar
  44. 44.
    van de Laar T, Visser C, Holster M, Lopez CG, Kreuning D, Sierkstra L, Lindner N, Verrips T (2007) Increased heterologous protein production by Saccharomyces cerevisiae growing on ethanol as sole carbon source. Biotechnol Bioeng 96:483–494PubMedCrossRefGoogle Scholar
  45. 45.
    Gaspar ML, Aregullin MA, Jesch SA, Henry SA (2006) Inositol induces a profound alteration in the pattern and rate of synthesis and turnover of membrane lipids in Saccharomyces cerevisiae. J Biol Chem 281:22773–22785PubMedCrossRefGoogle Scholar
  46. 46.
    Weuster-Botz D (2000) Experimental design for fermentation media development: statistical design or global random search? J Biosci Bioeng 90:473–483PubMedGoogle Scholar
  47. 47.
    Rezessy-Szabo JM, Nguyen QD, Hoschke A (2000) Optimisation of composition of media for the production of amylolytic enzymes by Thermomyces lanuginosus ATCC 34626. Food Technol Biotechnol 38:229–234Google Scholar
  48. 48.
    Ratnam BVV, Subba Rao S, Mendu DR, Narasimha Rao M, Ayyanna C (2005) Optimization of medium constituents and fermentation conditions for the production of ethanol from palmyra jaggery using response surface methodology. World J Microbiol Biotechnol 21:399–404CrossRefGoogle Scholar
  49. 49.
    Olson BH, Johnson MJ (1949) Factors producing high yeast yields in synthetic media. J Bacteriol 57:235–246Google Scholar
  50. 50.
    Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng 94:353–361PubMedCrossRefGoogle Scholar
  51. 51.
    Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258PubMedCrossRefGoogle Scholar
  52. 52.
    Perlman D, O’Brien E (1954) Characteristics of a cobalt tolerant culture of Saccharomyces cerevisiae. J Bacteriol 68:167–170PubMedGoogle Scholar
  53. 53.
    Bennett A, Rowe RI, Soch N, Eckhert CD (1999) Boron stimulates yeast (Saccharomyces cerevisiae) growth. J Nutr 129:2236–2238PubMedGoogle Scholar

Copyright information

© Springer Science+business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringChalmers University of TechnologyGothenburgSweden
  2. 2.School of Life & Health Sciences and Aston Research Centre for Healthy AgeingAston UniversityBirminghamUK

Personalised recommendations