DNA Methylation Changes in Prostate Cancer

  • Wolfgang Goering
  • Michael Kloth
  • Wolfgang A. Schulz
Part of the Methods in Molecular Biology book series (MIMB, volume 863)


Epigenetic alterations contribute significantly to the development and progression of prostate cancer, the most prevalent malignant tumor in males of Western industrialized countries. Here, we review recent research on DNA methylation alterations in this cancer type. Hypermethylation of several genes including GSTP1 is well known to occur in a consistent and apparently coordinate fashion during the transition from intraepithelial neoplasia to frank carcinoma. These hypermethylation events have shown promise as biomarkers for detection of prostate carcinoma. Many other individual genes have been shown to undergo hypermethylation, which is typically associated with diminished expression. These investigations indicate additional candidates for biomarkers; in particular, hypermethylation events associated with progression can be employed to identify more aggressive cases. In addition, some of genes silenced by aberrant methylation in prostate have been shown to exhibit properties of tumor suppressors, revealing insights into mechanisms of carcinogenesis. Whereas most studies in the past have used candidate gene approaches, new techniques allowing genome-wide screening for altered methylation are increasingly employed in prostate cancer research and have already yielded encouraging results.

Key words

Biomarker DNA hypermethylation DNA hypomethylation Prostate adenocarcinoma Cancer epigenetics 


  1. 1.
    American Cancer Society 2010. Cancer facts & figures 2010, American Cancer Society, Atlanta, GA.Google Scholar
  2. 2.
    Schultz, M., Parzinger, H., Posdnjakov, D.V., Chikisheva, T.A. and Schmidt-Schultz, T.H. (2007) Oldest known case of metastasizing prostate carcinoma diagnosed in the skeleton of a 2,700-year-old Scythian king from Arzhan (Siberia, Russia). Int J Cancer 121, 2591–2595.PubMedCrossRefGoogle Scholar
  3. 3.
    Shen, M.M. and Abate-Shen, C. (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24, 1967–2000.PubMedCrossRefGoogle Scholar
  4. 4.
    Sartor, A.O., Hricak, H., Wheeler, T.M., Coleman, J., Penson, D.F., Carroll, P.R., Rubin, M.A. and Scardino, P.T. (2008) Evaluating localized prostate cancer and identifying candidates for focal therapy. Urology 72, S12–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Ribeiro, F.R., Henrique, R., Hektoen, M., Berg, M., Jeronimo, C., Teixeira, M.R. and Lothe, R.A. (2006) Comparison of chromosomal and array-based comparative genomic hybridization for the detection of genomic imbalances in primary prostate carcinomas. Mol Cancer 5, 33.PubMedCrossRefGoogle Scholar
  6. 6.
    Sun, J., Liu, W., Adams, T.S., Li, X., Turner, A.R., Chang, B., Kim, J.W., Zheng, S.L., Isaacs, W.B. and Xu, J. (2007) DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate 67, 692–700.PubMedCrossRefGoogle Scholar
  7. 7.
    Taylor, B.S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B.S., Arora, V.K., Kaushik, P., Cerami, E., Reva, B., Antipin, Y., Mitsiades, N., Landers, T., Dolgalev, I., Major, J.E., Wilson, M., Socci, N.D., Lash, A.E., Heguy, A., Eastham, J.A., Scher, H.I., Reuter, V.E., Scardino, P.T., Sander, C., Sawyers, C.L. and Gerald, W.L. (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Kumar-Sinha, C., Tomlins, S.A. and Chinnaiyan, A.M. (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8, 497–511.PubMedCrossRefGoogle Scholar
  9. 9.
    Lin, C., Yang, L., Tanasa, B., Hutt, K., Ju, B.G., Ohgi, K., Zhang, J., Rose, D.W., Fu, X.D., Glass, C.K. and Rosenfeld, M.G. (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083.PubMedCrossRefGoogle Scholar
  10. 10.
    Mani, R.S., Tomlins, S.A., Callahan, K., Ghosh, A., Nyati, M.K., Varambally, S., Palanisamy, N. and Chinnaiyan, A.M. (2009) Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230.PubMedCrossRefGoogle Scholar
  11. 11.
    Haffner, M.C., Aryee, M.J., Toubaji, A., Esopi, D.M., Albadine, R., Gurel, B., Isaacs, W.B., Bova, G.S., Liu, W., Xu, J., Meeker, A.K., Netto, G., De Marzo, A.M., Nelson, W.G. and Yegnasubramanian, S. (2010) Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42, 668–675.PubMedCrossRefGoogle Scholar
  12. 12.
    Luedeke, M., Linnert, C.M., Hofer, M.D., Surowy, H.M., Rinckleb, A.E., Hoegel, J., Kuefer, R., Rubin, M.A., Vogel, W. and Maier, C. (2009) Predisposition for TMPRSS2-ERG fusion in prostate cancer by variants in DNA repair genes. Cancer Epidemiol Biomarkers Prev 18, 3030–3035.PubMedCrossRefGoogle Scholar
  13. 13.
    Perner, S., Demichelis, F., Beroukhim, R., Schmidt, F.H., Mosquera, J.M., Setlur, S., Tchinda, J., Tomlins, S.A., Hofer, M.D., Pienta, K.G., Kuefer, R., Vessella, R., Sun, X.W., Meyerson, M., Lee, C., Sellers, W.R., Chinnaiyan, A.M. and Rubin, M.A. (2006) TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66, 8337–8341.PubMedCrossRefGoogle Scholar
  14. 14.
    Iljin, K., Wolf, M., Edgren, H., Gupta, S., Kilpinen, S., Skotheim, R.I., Peltola, M., Smit, F., Verhaegh, G., Schalken, J., Nees, M. and Kallioniemi, O. (2006) TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res 66, 10242–10246.PubMedCrossRefGoogle Scholar
  15. 15.
    Teixeira, M.R. (2008) Chromosome mechanisms giving rise to the TMPRSS2-ERG fusion oncogene in prostate cancer and HGPIN lesions. Am J Surg Pathol 32, 642–644; author reply 4.Google Scholar
  16. 16.
    Tomlins, S.A., Bjartell, A., Chinnaiyan, A.M., Jenster, G., Nam, R.K., Rubin, M.A. and Schalken, J.A. (2009) ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol 56, 275–286.PubMedCrossRefGoogle Scholar
  17. 17.
    Berger, M.F., Lawrence, M.S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A.Y., Sboner, A., Esgueva, R., Pflueger, D., Sougnez, C., Onofrio, R., Carter, S.L., Park, K., Habegger, L., Ambrogio, L., Fennell, T., Parkin, M., Saksena, G., Voet, D., Ramos, A.H., Pugh, T.J., Wilkinson, J., Fisher, S., Winckler, W., Mahan, S., Ardlie, K., Baldwin, J., Simons, J.W., Kitabayashi, N., MacDonald, T.Y., Kantoff, P.W., Chin, L., Gabriel, S.B., Gerstein, M.B., Golub, T.R., Meyerson, M., Tewari, A., Lander, E.S., Getz, G., Rubin, M.A. and Garraway, L.A. (2011) The genomic complexity of primary human prostate cancer. Nature 470, 214–220.PubMedCrossRefGoogle Scholar
  18. 18.
    King, J.C., Xu, J., Wongvipat, J., Hieronymus, H., Carver, B.S., Leung, D.H., Taylor, B.S., Sander, C., Cardiff, R.D., Couto, S.S., Gerald, W.L. and Sawyers, C.L. (2009) Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 41, 524–526.PubMedCrossRefGoogle Scholar
  19. 19.
    Carver, B.S., Tran, J., Gopalan, A., Chen, Z., Shaikh, S., Carracedo, A., Alimonti, A., Nardella, C., Varmeh, S., Scardino, P.T., Cordon-Cardo, C., Gerald, W. and Pandolfi, P.P. (2009) Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 41, 619–624.PubMedCrossRefGoogle Scholar
  20. 20.
    Yu, J., Mani, R.S., Cao, Q., Brenner, C.J., Cao, X., Wang, X., Wu, L., Li, J., Hu, M., Gong, Y., Cheng, H., Laxman, B., Vellaichamy, A., Shankar, S., Li, Y., Dhanasekaran, S.M., Morey, R., Barrette, T., Lonigro, R.J., Tomlins, S.A., Varambally, S., Qin, Z.S. and Chinnaiyan, A.M. (2010) An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454.PubMedCrossRefGoogle Scholar
  21. 21.
    Attard, G., Clark, J., Ambroisine, L., Fisher, G., Kovacs, G., Flohr, P., Berney, D., Foster, C.S., Fletcher, A., Gerald, W.L., Moller, H., Reuter, V., De Bono, J.S., Scardino, P., Cuzick, J. and Cooper, C.S. (2008) Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene 27, 253–263.PubMedCrossRefGoogle Scholar
  22. 22.
    Yoshimoto, M., Joshua, A.M., Cunha, I.W., Coudry, R.A., Fonseca, F.P., Ludkovski, O., Zielenska, M., Soares, F.A. and Squire, J.A. (2008) Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod Pathol 21, 1451–1460.PubMedCrossRefGoogle Scholar
  23. 23.
    Hermans, K.G., Boormans, J.L., Gasi, D., van Leenders, G.J., Jenster, G., Verhagen, P.C. and Trapman, J. (2009) Overexpression of prostate-specific TMPRSS2(exon 0)-ERG fusion transcripts corresponds with favorable prognosis of prostate cancer. Clin Cancer Res 15, 6398–6403.PubMedCrossRefGoogle Scholar
  24. 24.
    Park, J.Y. (2010) Promoter hypermethylation in prostate cancer. Cancer Control 17, 245–255.PubMedGoogle Scholar
  25. 25.
    Feinberg, A.P., Ohlsson, R. and Henikoff, S. (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7, 21–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Schulz, W.A. and Hoffmann, M.J. (2009) Epigenetic mechanisms in the biology of prostate cancer. Semin Cancer Biol 19, 172–180.PubMedCrossRefGoogle Scholar
  27. 27.
    Lapointe, J., Li, C., Giacomini, C.P., Salari, K., Huang, S., Wang, P., Ferrari, M., Hernandez-Boussard, T., Brooks, J.D. and Pollack, J.R. (2007) Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res 67, 8504–8510.PubMedCrossRefGoogle Scholar
  28. 28.
    Brooks, J.D., Weinstein, M., Lin, X., Sun, Y., Pin, S.S., Bova, G.S., Epstein, J.I., Isaacs, W.B. and Nelson, W.G. (1998) CG island methylation changes near the GSTP1 gene in prostatic intraepithelial neoplasia. Cancer Epidemiol Biomarkers Prev 7, 531–536.PubMedGoogle Scholar
  29. 29.
    Florl, A.R., Steinhoff, C., Muller, M., Seifert, H.H., Hader, C., Engers, R., Ackermann, R. and Schulz, W.A. (2004) Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation. Br J Cancer 91, 985–994.PubMedGoogle Scholar
  30. 30.
    Schulz, W.A., Ingenwerth, M., Djuidje, C.E., Hader, C., Rahnenfuhrer, J. and Engers, R. (2010) Changes in cortical cytoskeletal and extracellular matrix gene expression in prostate cancer are related to oncogenic ERG deregulation. BMC Cancer 10, 505.PubMedCrossRefGoogle Scholar
  31. 31.
    Yegnasubramanian, S., Kowalski, J., Gonzalgo, M.L., Zahurak, M., Piantadosi, S., Walsh, P.C., Bova, G.S., De Marzo, A.M., Isaacs, W.B. and Nelson, W.G. (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64, 1975–1986.PubMedCrossRefGoogle Scholar
  32. 32.
    Schlesinger, Y., Straussman, R., Keshet, I., Farkash, S., Hecht, M., Zimmerman, J., Eden, E., Yakhini, Z., Ben-Shushan, E., Reubinoff, B.E., Bergman, Y., Simon, I. and Cedar, H. (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39, 232–236.PubMedCrossRefGoogle Scholar
  33. 33.
    Widschwendter, M., Fiegl, H., Egle, D., Mueller-Holzner, E., Spizzo, G., Marth, C., Weisenberger, D.J., Campan, M., Young, J., Jacobs, I. and Laird, P.W. (2007) Epigenetic stem cell signature in cancer. Nat Genet 39, 157–158.PubMedCrossRefGoogle Scholar
  34. 34.
    Gal-Yam, E.N., Egger, G., Iniguez, L., Holster, H., Einarsson, S., Zhang, X., Lin, J.C., Liang, G., Jones, P.A. and Tanay, A. (2008) Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A 105, 12979–12984.PubMedCrossRefGoogle Scholar
  35. 35.
    Hoffmann, M.J., Engers, R., Florl, A.R., Otte, A.P., Muller, M. and Schulz, W.A. (2007) Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol Ther 6, 1403–1412.PubMedCrossRefGoogle Scholar
  36. 36.
    Morey, L. and Helin, K. (2010) Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 35, 323–332.PubMedCrossRefGoogle Scholar
  37. 37.
    McCabe, M.T., Brandes, J.C. and Vertino, P.M. (2009) Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res 15, 3927–3937.PubMedCrossRefGoogle Scholar
  38. 38.
    Seligson, D.B., Horvath, S., McBrian, M.A., Mah, V., Yu, H., Tze, S., Wang, Q., Chia, D., Goodglick, L. and Kurdistani, S.K. (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174, 1619–1628.PubMedCrossRefGoogle Scholar
  39. 39.
    Bianco-Miotto, T., Chiam, K., Buchanan, G., Jindal, S., Day, T.K., Thomas, M., Pickering, M.A., O’Loughlin, M.A., Ryan, N.K., Raymond, W.A., Horvath, L.G., Kench, J.G., Stricker, P.D., Marshall, V.R., Sutherland, R.L., Henshall, S.M., Gerald, W.L., Scher, H.I., Risbridger, G.P., Clements, J.A., Butler, L.M., Tilley, W.D., Horsfall, D.J. and Ricciardelli, C. (2010) Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev 19, 2611–2622.PubMedCrossRefGoogle Scholar
  40. 40.
    Varambally, S., Dhanasekaran, S.M., Zhou, M., Barrette, T.R., Kumar-Sinha, C., Sanda, M.G., Ghosh, D., Pienta, K.J., Sewalt, R.G., Otte, A.P., Rubin, M.A. and Chinnaiyan, A.M. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629.PubMedCrossRefGoogle Scholar
  41. 41.
    Wilson, A.S., Power, B.E. and Molloy, P.L. (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775, 138–162.PubMedGoogle Scholar
  42. 42.
    Florl, A.R., Lower, R., Schmitz-Drager, B.J. and Schulz, W.A. (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80, 1312–1321.PubMedCrossRefGoogle Scholar
  43. 43.
    Suter, C.M., Martin, D.I. and Ward, R.L. (2004) Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int J Colorectal Dis 19, 95–101.PubMedCrossRefGoogle Scholar
  44. 44.
    Yegnasubramanian, S., Haffner, M.C., Zhang, Y., Gurel, B., Cornish, T.C., Wu, Z., Irizarry, R.A., Morgan, J., Hicks, J., DeWeese, T.L., Isaacs, W.B., Bova, G.S., De Marzo, A.M. and Nelson, W.G. (2008) DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity. Cancer Res 68, 8954–8967.PubMedCrossRefGoogle Scholar
  45. 45.
    Hoffmann, M.J., Muller, M., Engers, R. and Schulz, W.A. (2006) Epigenetic control of CTCFL/BORIS and OCT4 expression in urogenital malignancies. Biochem Pharmacol 72, 1577–1588.PubMedCrossRefGoogle Scholar
  46. 46.
    Fu, V.X., Dobosy, J.R., Desotelle, J.A., Almassi, N., Ewald, J.A., Srinivasan, R., Berres, M., Svaren, J., Weindruch, R. and Jarrard, D.F. (2008) Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res 68, 6797–6802.PubMedCrossRefGoogle Scholar
  47. 47.
    Bhusari, S., Yang, B., Huang, W. and Jarrard, D.F. (2011) Insulin-like Growth Factor-2(IGF2) Loss of Imprinting Marks a Field Defect Within Human Prostates Containing Cancer. The Prostate, in press.Google Scholar
  48. 48.
    Franco, R., Schoneveld, O., Georgakilas, A.G. and Panayiotidis, M.I. (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266, 6–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Nelson, W.G., Yegnasubramanian, S., Agoston, A.T., Bastian, P.J., Lee, B.H., Nakayama, M. and De Marzo, A.M. (2007) Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 12, 4254–4266.PubMedCrossRefGoogle Scholar
  50. 50.
    Li, L.C. (2007) Epigenetics of prostate cancer. Front Biosci 12, 3377–3397.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee, W.H., Morton, R.A., Epstein, J.I., Brooks, J.D., Campbell, P.A., Bova, G.S., Hsieh, W.S., Isaacs, W.B. and Nelson, W.G. (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 91, 11733–11737.PubMedCrossRefGoogle Scholar
  52. 52.
    Jeronimo, C., Henrique, R., Hoque, M.O., Mambo, E., Ribeiro, F.R., Varzim, G., Oliveira, J., Teixeira, M.R., Lopes, C. and Sidransky, D. (2004) A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 10, 8472–8478.PubMedCrossRefGoogle Scholar
  53. 53.
    Santourlidis, S., Florl, A., Ackermann, R., Wirtz, H.C. and Schulz, W.A. (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39, 166–174.PubMedCrossRefGoogle Scholar
  54. 54.
    Aitchison, A., Warren, A., Neal, D. and Rabbitts, P. (2007) RASSF1A promoter methylation is frequently detected in both pre-malignant and non-malignant microdissected prostatic epithelial tissues. Prostate 67, 638–644.PubMedCrossRefGoogle Scholar
  55. 55.
    Kwabi-Addo, B., Chung, W., Shen, L., Ittmann, M., Wheeler, T., Jelinek, J. and Issa, J.P. (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13, 3796–3802.PubMedCrossRefGoogle Scholar
  56. 56.
    Kwabi-Addo, B., Wang, S., Chung, W., Jelinek, J., Patierno, S.R., Wang, B.D., Andrawis, R., Lee, N.H., Apprey, V., Issa, J.P. and Ittmann, M. (2010) Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin Cancer Res 16, 3539–3547.PubMedCrossRefGoogle Scholar
  57. 57.
    Ahmed, H. (2010) Promoter Methylation in Prostate Cancer and its Application for the Early Detection of Prostate Cancer Using Serum and Urine Samples. Biomark Cancer 2010, 17–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Hessels, D., Verhaegh, G.W., Schalken, J.A. and Witjes, J.A. (2004) Applicability of biomarkers in the early diagnosis of prostate cancer. Expert Rev Mol Diagn 4, 513–526.PubMedCrossRefGoogle Scholar
  59. 59.
    Jeronimo, C., Usadel, H., Henrique, R., Oliveira, J., Lopes, C., Nelson, W.G. and Sidransky, D. (2001) Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst 93, 1747–1752.PubMedCrossRefGoogle Scholar
  60. 60.
    Harden, S.V., Sanderson, H., Goodman, S.N., Partin, A.A., Walsh, P.C., Epstein, J.I. and Sidransky, D. (2003) Quantitative GSTP1 methylation and the detection of prostate adenocarcinoma in sextant biopsies. J Natl Cancer Inst 95, 1634–1637.PubMedCrossRefGoogle Scholar
  61. 61.
    Vanaja, D.K., Ehrich, M., Van den Boom, D., Cheville, J.C., Karnes, R.J., Tindall, D.J., Cantor, C.R. and Young, C.Y. (2009) Hypermethylation of genes for diagnosis and risk stratification of prostate cancer. Cancer Invest 27, 549–560.PubMedCrossRefGoogle Scholar
  62. 62.
    Hoque, M.O., Topaloglu, O., Begum, S., Henrique, R., Rosenbaum, E., Van Criekinge, W., Westra, W.H. and Sidransky, D. (2005) Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J Clin Oncol 23, 6569–6575.PubMedCrossRefGoogle Scholar
  63. 63.
    Roupret, M., Hupertan, V., Yates, D.R., Catto, J.W., Rehman, I., Meuth, M., Ricci, S., Lacave, R., Cancel-Tassin, G., de la Taille, A., Rozet, F., Cathelineau, X., Vallancien, G., Hamdy, F.C. and Cussenot, O. (2007) Molecular detection of localized prostate cancer using quantitative methylation-specific PCR on urinary cells obtained following prostate massage. Clin Cancer Res 13, 1720–1725.PubMedCrossRefGoogle Scholar
  64. 64.
    Sunami, E., Shinozaki, M., Higano, C.S., Wollman, R., Dorff, T.B., Tucker, S.J., Martinez, S.R., Mizuno, R., Singer, F.R. and Hoon, D.S. (2009) Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin Chem 55, 559–567.PubMedCrossRefGoogle Scholar
  65. 65.
    Enokida, H., Shiina, H., Urakami, S., Igawa, M., Ogishima, T., Li, L.C., Kawahara, M., Nakagawa, M., Kane, C.J., Carroll, P.R. and Dahiya, R. (2005) Multigene methylation analysis for detection and staging of prostate cancer. Clin Cancer Res 11, 6582–6588.PubMedCrossRefGoogle Scholar
  66. 66.
    Ehrich, M., Field, J.K., Liloglou, T., Xinarianos, G., Oeth, P., Nelson, M.R., Cantor, C.R. and van den Boom, D. (2006) Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Res 66, 10911–10918.PubMedCrossRefGoogle Scholar
  67. 67.
    Huffman, D.M., Grizzle, W.E., Bamman, M.M., Kim, J.S., Eltoum, I.A., Elgavish, A. and Nagy, T.R. (2007) SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res 67, 6612–6618.PubMedCrossRefGoogle Scholar
  68. 68.
    Richiardi, L., Fiano, V., Vizzini, L., De Marco, L., Delsedime, L., Akre, O., Tos, A.G. and Merletti, F. (2009) Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol 27, 3161–3168.PubMedCrossRefGoogle Scholar
  69. 69.
    Liu, L., Kron, K.J., Pethe, V.V., Demetrashvili, N., Nesbitt, M.E., Trachtenberg, J., Ozcelik, H., Fleshner, N.E., Briollais, L., van der Kwast, T.H. and Bapat, B. (2011) Association of tissue promoter methylation levels of APC, TGFbeta2, HOXD3, and RASSF1A with prostate cancer progression. Int J Cancer Google Scholar
  70. 70.
    Henrique, R., Ribeiro, F.R., Fonseca, D., Hoque, M.O., Carvalho, A.L., Costa, V.L., Pinto, M., Oliveira, J., Teixeira, M.R., Sidransky, D. and Jeronimo, C. (2007) High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res 13, 6122–6129.PubMedCrossRefGoogle Scholar
  71. 71.
    Mikeska, T., Candiloro, I.L.M. and Dobrovic, A. (2010) The implications of heterogeneous DNA methylation for the accurate quantification of methylation. Epigenomics 2, 561–573.PubMedCrossRefGoogle Scholar
  72. 72.
    Higuchi, T., Nakamura, M., Shimada, K., Ishida, E., Hirao, K. and Konishi, N. (2008) HRK inactivation associated with promoter methylation and LOH in prostate cancer. Prostate 68, 105–113.PubMedCrossRefGoogle Scholar
  73. 73.
    Park, J.Y., Zheng, W., Kim, D., Cheng, J.Q., Kumar, N., Ahmad, N. and Pow-Sang, J. (2007) Candidate tumor suppressor gene SLC5A8 is frequently down-regulated by promoter hypermethylation in prostate tumor. Cancer Detect Prev 31, 359–365.PubMedCrossRefGoogle Scholar
  74. 74.
    Majid, S., Dar, A.A., Shahryari, V., Hirata, H., Ahmad, A., Saini, S., Tanaka, Y., Dahiya, A.V. and Dahiya, R. (2010) Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer 116, 66–76.PubMedCrossRefGoogle Scholar
  75. 75.
    Kwabi-Addo, B., Ren, C. and Ittmann, M. (2009) DNA methylation and aberrant expression of Sprouty1 in human prostate cancer. Epigenetics 4, 54–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Fritzsche, S., Kenzelmann, M., Hoffmann, M.J., Muller, M., Engers, R., Grone, H.J. and Schulz, W.A. (2006) Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma. Endocr Relat Cancer 13, 839–849.PubMedCrossRefGoogle Scholar
  77. 77.
    Pierconti, F., Martini, M., Pinto, F., Cenci, T., Capodimonti, S., Calarco, A., Bassi, P.F. and Larocca, L.M. (2011) Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior. Prostate 71, 318–325.PubMedCrossRefGoogle Scholar
  78. 78.
    Shivapurkar, N., Toyooka, S., Toyooka, K.O., Reddy, J., Miyajima, K., Suzuki, M., Shigematsu, H., Takahashi, T., Parikh, G., Pass, H.I., Chaudhary, P.M. and Gazdar, A.F. (2004) Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer 109, 786–792.PubMedCrossRefGoogle Scholar
  79. 79.
    Hornstein, M., Hoffmann, M.J., Alexa, A., Yamanaka, M., Muller, M., Jung, V., Rahnenfuhrer, J. and Schulz, W.A. (2008) Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics 5, 123–136.PubMedGoogle Scholar
  80. 80.
    Cho, N.Y., Kim, B.H., Choi, M., Yoo, E.J., Moon, K.C., Cho, Y.M., Kim, D. and Kang, G.H. (2007) Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol 211, 269–277.PubMedCrossRefGoogle Scholar
  81. 81.
    Semina, E.V., Reiter, R., Leysens, N.J., Alward, W.L., Small, K.W., Datson, N.A., Siegel-Bartelt, J., Bierke-Nelson, D., Bitoun, P., Zabel, B.U., Carey, J.C. and Murray, J.C. (1996) Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14, 392–399.PubMedCrossRefGoogle Scholar
  82. 82.
    Flomen, R.H., Vatcheva, R., Gorman, P.A., Baptista, P.R., Groet, J., Barisic, I., Ligutic, I. and Nizetic, D. (1998) Construction and analysis of a sequence-ready map in 4q25: Rieger syndrome can be caused by haploinsufficiency of RIEG, but also by chromosome breaks approximately 90kb upstream of this gene. Genomics 47, 409–413.PubMedCrossRefGoogle Scholar
  83. 83.
    Lines, M.A., Kozlowski, K., Kulak, S.C., Allingham, R.R., Heon, E., Ritch, R., Levin, A.V., Shields, M.B., Damji, K.F., Newlin, A. and Walter, M.A. (2004) Characterization and prevalence of PITX2 microdeletions and mutations in Axenfeld-Rieger malformations. Invest Ophthalmol Vis Sci 45, 828–833.PubMedCrossRefGoogle Scholar
  84. 84.
    Weiss, G., Cottrell, S., Distler, J., Schatz, P., Kristiansen, G., Ittmann, M., Haefliger, C., Lesche, R., Hartmann, A., Corman, J. and Wheeler, T. (2009) DNA methylation of the PITX2 gene promoter region is a strong independent prognostic marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J Urol 181, 1678–1685.PubMedCrossRefGoogle Scholar
  85. 85.
    Toyota, M., Kopecky, K.J., Toyota, M.O., Jair, K.W., Willman, C.L. and Issa, J.P. (2001) Methylation profiling in acute myeloid leukemia. Blood 97, 2823–2829.PubMedCrossRefGoogle Scholar
  86. 86.
    Maier, S., Nimmrich, I., Koenig, T., Eppenberger-Castori, S., Bohlmann, I., Paradiso, A., Spyratos, F., Thomssen, C., Mueller, V., Nahrig, J., Schittulli, F., Kates, R., Lesche, R., Schwope, I., Kluth, A., Marx, A., Martens, J.W., Foekens, J.A., Schmitt, M. and Harbeck, N. (2007) DNA-methylation of the homeodomain transcription factor PITX2 reliably predicts risk of distant disease recurrence in tamoxifen-treated, node-negative breast cancer patients--Technical and clinical validation in a multi-centre setting in collaboration with the European Organisation for Research and Treatment of Cancer (EORTC) PathoBiology group. European Journal of Cancer 43, 1679–1686.PubMedCrossRefGoogle Scholar
  87. 87.
    Duffy, M.J., Napieralski, R., Martens, J.W.M., Span, P.N., Spyratos, F., Sweep, F.C.G.J., Brunner, N., Foekens, J.A., Schmitt, M. and Grp, E.P. (2009) Methylated genes as new cancer biomarkers. European Journal of Cancer 45, 335–346.PubMedCrossRefGoogle Scholar
  88. 88.
    Gobel, G., Auer, D., Gaugg, I., Schneitter, A., Lesche, R., Muller-Holzner, E., Marth, C. and Daxenbichler, G. (2011) Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Res Treat Google Scholar
  89. 89.
    Banez, L.L., Sun, L., van Leenders, G.J., Wheeler, T.M., Bangma, C.H., Freedland, S.J., Ittmann, M.M., Lark, A.L., Madden, J.F., Hartman, A., Weiss, G. and Castanos-Velez, E. (2010) Multicenter clinical validation of PITX2 methylation as a prostate specific antigen recurrence predictor in patients with post-radical prostatectomy prostate cancer. J Urol 184, 149–156.PubMedCrossRefGoogle Scholar
  90. 90.
    Schatz, P., Dietrich, D., Koenig, T., Burger, M., Lukas, A., Fuhrmann, I., Kristiansen, G., Stoehr, R., Schuster, M., Lesche, R., Weiss, G., Corman, J. and Hartmann, A. (2010) Development of a diagnostic microarray assay to assess the risk of recurrence of prostate cancer based on PITX2 DNA methylation. J Mol Diagn 12, 345–353.PubMedCrossRefGoogle Scholar
  91. 91.
    Nimmrich, I., Sieuwerts, A.M., Meijer-van Gelder, M.E., Schwope, I., Bolt-de Vries, J., Harbeck, N., Koenig, T., Hartmann, O., Kluth, A., Dietrich, D., Magdolen, V., Portengen, H., Look, M.P., Klijn, J.G., Lesche, R., Schmitt, M., Maier, S., Foekens, J.A. and Martens, J.W. (2008) DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat 111, 429–437.PubMedCrossRefGoogle Scholar
  92. 92.
    Vinarskaja, A., Schulz, W.A., Ingenwerth, M., Hader, C. and Arsov, C. (2011) Association of PITX2 mRNA downregulation in prostate cancer with promoter hypermethylation and poor prognosis. Urol Oncol 30, in press.Google Scholar
  93. 93.
    Liu, J.W., Nagpal, J.K., Jeronimo, C., Lee, J.E., Henrique, R., Kim, M.S., Ostrow, K.L., Yamashita, K., van Criekinge, V., Wu, G., Moon, C.S., Trink, B. and Sidransky, D. (2008) Hypermethylation of MCAM gene is associated with advanced tumor stage in prostate cancer. Prostate 68, 418–426.PubMedCrossRefGoogle Scholar
  94. 94.
    Guo, L., Zhong, D., Lau, S., Liu, X., Dong, X.Y., Sun, X., Yang, V.W., Vertino, P.M., Moreno, C.S., Varma, V., Dong, J.T. and Zhou, W. (2008) Sox7 Is an independent checkpoint for beta-catenin function in prostate and colon epithelial cells. Mol Cancer Res 6, 1421–1430.PubMedCrossRefGoogle Scholar
  95. 95.
    Chang, G., Xu, S., Dhir, R., Chandran, U., O’Keefe, D.S., Greenberg, N.M. and Gingrich, J.R. (2010) Hypoexpression and epigenetic regulation of candidate tumor suppressor gene CADM-2 in human prostate cancer. Clin Cancer Res 16, 5390–5401.PubMedCrossRefGoogle Scholar
  96. 96.
    Carey, J.P., Asirvatham, A.J., Galm, O., Ghogomu, T.A. and Chaudhary, J. (2009) Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer 9, 173.PubMedCrossRefGoogle Scholar
  97. 97.
    Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A. and Chinnaiyan, A.M. (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6.PubMedGoogle Scholar
  98. 98.
    Sorensen, K.D., Borre, M., Orntoft, T.F., Dyrskjot, L. and Torring, N. (2008) Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer. Int J Cancer 122, 509–519.PubMedCrossRefGoogle Scholar
  99. 99.
    Sorensen, K.D., Wild, P.J., Mortezavi, A., Adolf, K., Torring, N., Heeboll, S., Ulhoi, B.P., Ottosen, P., Sulser, T., Hermanns, T., Moch, H., Borre, M., Orntoft, T.F. and Dyrskjot, L. (2009) Genetic and epigenetic SLC18A2 silencing in prostate cancer is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 15, 1400–1410.PubMedCrossRefGoogle Scholar
  100. 100.
    Schulz, W. and Goering, W. (2011) Eagles report: Developing cancer biomarkers from genomewide DNA methylation analyses. World J Clin Oncol 2, 1–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Kondo, Y. and Issa, J.P. (2010) DNA methylation profiling in cancer. Expert Rev Mol Med 12, e23.PubMedCrossRefGoogle Scholar
  102. 102.
    Murphy, T.M., Sullivan, L., Lane, C., O’Connor, L., Barrett, C., Hollywood, D., Lynch, T., Lawler, M. and Perry, A.S. (2011) In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer. Prostate 71, 1–17.PubMedCrossRefGoogle Scholar
  103. 103.
    Kim, S.J., Kelly, W.K., Fu, A., Haines, K., Hoffman, A., Zheng, T. and Zhu, Y. (2011) Genome-wide methylation analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer. Cancer Lett Google Scholar
  104. 104.
    Kron, K., Pethe, V., Briollais, L., Sadikovic, B., Ozcelik, H., Sunderji, A., Venkateswaran, V., Pinthus, J., Fleshner, N., van der Kwast, T. and Bapat, B. (2009) Discovery of novel hypermethylated genes in prostate cancer using genomic CpG island microarrays. PLoS One 4, e4830.PubMedCrossRefGoogle Scholar
  105. 105.
    Miyazaki, Y.J., Hamada, J., Tada, M., Furuuchi, K., Takahashi, Y., Kondo, S., Katoh, H. and Moriuchi, T. (2002) HOXD3 enhances motility and invasiveness through the TGF-beta-dependent and -independent pathways in A549 cells. Oncogene 21, 798–808.PubMedCrossRefGoogle Scholar
  106. 106.
    Kron, K.J., Liu, L., Pethe, V.V., Demetrashvili, N., Nesbitt, M.E., Trachtenberg, J., Ozcelik, H., Fleshner, N.E., Briollais, L., van der Kwast, T.H. and Bapat, B. (2010) DNA methylation of HOXD3 as a marker of prostate cancer progression. Lab Invest 90, 1060–1067.PubMedCrossRefGoogle Scholar
  107. 107.
    Ibragimova, I., de Caceres, I.I., Hoffman, A.M., Potapova, A., Dulaimi, E., Al-Saleem, T., Hudes, G.R., Ochs, M.F. and Cairns, P. (2010) Global Reactivation of Epigenetically Silenced Genes in Prostate Cancer. Cancer Prevention Research 3, 1084–1092.PubMedCrossRefGoogle Scholar
  108. 108.
    Rauhala, H.E., Porkka, K.P., Saramaki, O.R., Tammela, T.L. and Visakorpi, T. (2008) Clusterin is epigenetically regulated in prostate cancer. Int J Cancer 123, 1601–1609.PubMedCrossRefGoogle Scholar
  109. 109.
    Devaney, J., Stirzaker, C., Qu, W., Song, J.Z., Statham, A.L., Patterson, K.I., Horvath, L.G., Tabor, B., Coolen, M.W., Hulf, T., Kench, J.G., Henshall, S.M., Pe Benito, R., Haynes, A.M., Mayor, R., Peinado, M.A., Sutherland, R.L. and Clark, S.J. (2011) Epigenetic deregulation across chromosome 2q14.2 differentiates normal from prostate cancer and provides a regional panel of novel DNA methylation cancer biomarkers. Cancer Epidemiol Biomarkers Prev 20, 148–159.PubMedCrossRefGoogle Scholar
  110. 110.
    Guan, M., Xu, C., Zhang, F. and Ye, C. (2009) Aberrant methylation of EphA7 in human prostate cancer and its relation to clinicopathologic features. Int J Cancer 124, 88–94.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim, J.W., Cheng, Y., Liu, W., Li, T., Yegnasubramanian, S., Zheng, S.L., Xu, J., Isaacs, W.B. and Chang, B.L. (2009) Genetic and epigenetic inactivation of LPL gene in human prostate cancer. Int J Cancer 124, 734–738.PubMedCrossRefGoogle Scholar
  112. 112.
    Ribarska, T., Ingenwerth, M., Goering, W., Engers, R. and Schulz, W.A. (2010) Epigenetic inactivation of the placentally imprinted tumor suppressor gene TFPI2 in prostate carcinoma. Cancer Genomics Pro­teomics 7, 51–60.PubMedGoogle Scholar
  113. 113.
    Kim, J.H., Dhanasekaran, S.M., Prensner, J.R., Cao, X., Robinson, D., Kalyana-Sundaram, S., Huang, C., Shankar, S., Jing, X., Iyer, M., Hu, M., Sam, L., Grasso, C., Maher, C.A., Palanisamy, N., Mehra, R., Kominsky, H.D., Siddiqui, J., Yu, J., Qin, Z.S. and Chinnaiyan, A.M. (2011) Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Res 21, 1028–1041.PubMedGoogle Scholar
  114. 114.
    Kim, S.J., Kelly, W.K., Fu, A., Haines, K., Hoffman, A. Zheng, T. and Zhu, Y. (2011) Genome-wide methylation analysis identifies involvement of TNF-alpha mediated cancer pathways in prostate cancer. Cancer Lett 302, 47–53.PubMedGoogle Scholar
  115. 115.
    Kim, Y.J., Yoon, H.Y., Kim, S.K., Kim, Y.W., Kim, E.J., Kim, I.Y. and Kim, W.J. (2011) EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling. Clin Cancer Res 17, 4523–4530.PubMedGoogle Scholar
  116. 116.
    Kobayashi, Y., Absher, D.M., Gulzar, Z.G., Young, S.R., McKenney, J.K., Peehl, D.M., Brooks, J.D., Myers, R.M., Sherlock, G. (2011) DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res 21, 1017–1027.PubMedGoogle Scholar
  117. 117.
    Schwartzman, J., Mongoue-Tchokote, S., Gibbs, A., Gao, L., Corless, C.L., Jin, J., Zarour, L., Higano, C., True, L.D., Vessella, R.L., Wilmot, B., Bottomly, D., McWeeney, S.K., Bova, G.S., Partin, A.W., Mori, M. and Alumkal J. (2011) A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate ­cancer. Epigenetics 6, 1248–1256.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wolfgang Goering
    • 1
  • Michael Kloth
    • 1
  • Wolfgang A. Schulz
    • 1
  1. 1.Department of UrologyHeinrich Heine UniversityDuesseldorfGermany

Personalised recommendations