Multifactorial Etiology of Gastric Cancer

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 863)

Abstract

The prevalence of gastric cancer is associated with several factors including geographical location, diet, and genetic background of the host. However, it is evident that infection with Helicobacter pylori (H. pylori) is crucial for the development of the disease. Virulence of the bacteria is also important in modulating the risk of the disease. After infection, H. pylori gains access to the gastric mucosa and triggers the production of cytokines that promote recruitment of inflammatory cells, probably involved in tissue damage. Once the infection is established, a cascade of inflammatory steps associated with changes in the gastric epithelia that may lead to cancer is triggered. H. pylori-induced gastritis and H. pylori-associated gastric cancer have been the focus of extensive research aiming to discover the underlying mechanisms of gastric tissue damage. This research has led to the association of host genetic components with the risk of the disease. Among these is the presence of single nucleotide polymorphisms (SNPs) in several genes, including cytokine genes, which are able to differentially modulate the production of inflammatory cytokines and then modulate the risk of gastric cancer. Interestingly, the frequency of some of these SNPs is different among populations and may serve as a predictive factor for gastric cancer risk within that specific population. However, the role played by other genetic modifications should not be minimized. Methylation of gene promoters has been recognized as a major mechanism of gene expression regulation without changing the primary structure of the DNA. Most DNA methylation occurs in cytosine residues in CpG dinucleotide, but it can also be found in other DNA bases. DNA methyltransferases add methyl groups to the CpG dinucleotide, and when this methylation level is too high, the gene expression is turned off. In H. pylori infection as well as in gastric cancer, hypermethylation of promoters of genes involved in cell cycle control, metabolism of essential nutrients, and production of inflammatory mediators, among others, has been described. Interestingly, DNA changes like SNPs or mutations can create CpG sites in sequences where transcription factors normally sit, affecting transcription.

In this chapter, we review the literature about the role of SNPs and methylation on H. pylori infection and gastric cancer, with big emphasis to the H. pylori role in the development of the disease due to the strong association between both.

Key words

Helicobacter pylori Gastric cancer Single nucleotide polymorphisms Methylation 

References

  1. 1.
    GLOBOCAN. Stomach Cancer Incidence and Mortality Worldwide in 2008. http://globocan.iarc.fr/. 2008.
  2. 2.
    Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005) Global cancer statistics, 2002. CA Cancer J. Clin., 55, 74–108.PubMedCrossRefGoogle Scholar
  3. 3.
    Parkin, D.M. (2004) International variation. Oncogene, 23, 6329–6340.PubMedCrossRefGoogle Scholar
  4. 4.
    Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010) Cancer statistics, 2010. CA Cancer J Clin., 60, 277–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Jass, J.R., Sobin, L.H., and Watanabe, H. (1990) The World Health Organization’s histologic classification of gastrointestinal tumors. A commentary on the second edition. Cancer, 66, 2162–2167.PubMedCrossRefGoogle Scholar
  6. 6.
    Mulligan, R.M. (1972) Histogenesis and biologic behavior of gastric carcinoma. Pathol. Annu., 7, 349–415.PubMedGoogle Scholar
  7. 7.
    Ming, S.C. (1977) Gastric carcinoma. A pathobiological classification. Cancer, 39, 2475–2485.PubMedCrossRefGoogle Scholar
  8. 8.
    LAURÉN, P. (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at histo-clinical classification. Acta Pathol. Microbiol. Scand., 64, 31–49.PubMedGoogle Scholar
  9. 9.
    Goseki, N., Takizawa, T., and Koike, M. (1992) Differences in the mode of the extension of gastric cancer classified by histological type: new histological classification of gastric carcinoma. Gut, 33, 606–612.PubMedCrossRefGoogle Scholar
  10. 10.
    Crew, K.D. and Neugut, A.I. (2006) Epidemiology of gastric cancer. World J Gastroenterol., 12, 354–362.PubMedGoogle Scholar
  11. 11.
    Correa, P., Sasano, N., Stemmermann, G.N., and Haenszel, W. (1973) Pathology of gastric carcinoma in Japanese populations: comparisons between Miyagi prefecture, Japan, and Hawaii. J Natl. Cancer Inst., 51, 1449–1459.PubMedGoogle Scholar
  12. 12.
    Mohar, A., Suchil-Bernal, L., Hernandez-Guerrero, A., Podolsky-Rapoport, I., Herrera-Goepfert, R., Mora-Tiscareno, A. et al. (1997) Intestinal type: diffuse type ratio of gastric carcinoma in a Mexican population. J Exp. Clin. Cancer Res., 16, 189–194.PubMedGoogle Scholar
  13. 13.
    Kaneko, S. and Yoshimura, T. (2001) Time trend analysis of gastric cancer incidence in Japan by histological types, 1975-1989. Br. J Cancer, 84, 400–405.PubMedCrossRefGoogle Scholar
  14. 14.
    Henson, D.E., Dittus, C., Younes, M., Nguyen, H., and Bores-Saavedra, J. (2004) Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. Arch. Pathol. Lab Med., 128, 765–770.PubMedGoogle Scholar
  15. 15.
    IARC. IARC monograph on the evaluation of carcinogenic risks to humans:Schistosomes, liver flukes and Helicobacter pylori. IARC 61, 177–240. 1994.Google Scholar
  16. 16.
    Suerbaum, S. and Michetti, P. (2002) Helicobacter pylori infection. N. Engl. J Med., 347, 1175–1186.PubMedCrossRefGoogle Scholar
  17. 17.
    Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M. et al. (2001) Helicobacter pylori infection and the development of gastric cancer. N. Engl. J Med., 345, 784–789.PubMedCrossRefGoogle Scholar
  18. 18.
    Wroblewski, L.E., Peek, R.M., Jr., and Wilson, K.T. (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev., 23, 713–739.PubMedCrossRefGoogle Scholar
  19. 19.
    Dixon, M.F., Genta, R.M., Yardley, J.H., and Correa, P. (1996) Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol., 20, 1161–1181.Google Scholar
  20. 20.
    Hansson, L.E., Nyren, O., Hsing, A.W., Bergstrom, R., Josefsson, S., Chow, W.H. et al. (1996) The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N. Engl. J Med., 335, 242–249.PubMedCrossRefGoogle Scholar
  21. 21.
    Correa, P. and Houghton, J. (2007) Carcinogenesis of Helicobacter pylori. Gastroenterology, 133, 659–672.PubMedCrossRefGoogle Scholar
  22. 22.
    Zabaleta, J., Camargo, M.C., Piazuelo, M.B., Fontham, E., Schneider, B.G., Sicinschi, L.A. et al. (2006) Association of interleukin-1beta gene polymorphisms with precancerous gastric lesions in African Americans and Caucasians. Am. J. Gastroenterol., 101, 163–171.PubMedCrossRefGoogle Scholar
  23. 23.
    Rugge, M., Correa, P., Dixon, M.F., Hattori, T., Leandro, G., Lewin, K. et al. (2000) Gastric dysplasia: the Padova international classification. Am. J Surg. Pathol., 24, 167–176.PubMedCrossRefGoogle Scholar
  24. 24.
    Correa, P., Haenszel, W., Cuello, C., Zavala, D., Fontham, E., Zarama, G. et al. (1990) Gastric precancerous process in a high risk population: cohort follow-up. Cancer Res., 50, 4737–4740.PubMedGoogle Scholar
  25. 25.
    Coussens, L.M. and Werb, Z. (2002) Inflammation and cancer. Nature, 420, 860–867.PubMedCrossRefGoogle Scholar
  26. 26.
    El-Omar, E.M., Carrington, M., Chow, W.H., McColl, K.E., Bream, J.H., Young, H.A. et al. (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature, 404, 398–402.PubMedCrossRefGoogle Scholar
  27. 27.
    Alpizar-Alpizar,W., Perez-Perez, G.I., Une, C., Cuenca, P., and Sierra, R. (2005) Association of interleukin-1B and interleukin-1RN polymorphisms with gastric cancer in a high-risk population of Costa Rica. Clin. Exp. Med., 5, 169–176.PubMedCrossRefGoogle Scholar
  28. 28.
    Machado, J.C., Figueiredo, C., Canedo, P., Pharoah, P., Carvalho, R., Nabais, S. et al. (2003) A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology, 125, 364–371.PubMedCrossRefGoogle Scholar
  29. 29.
    El-Omar, E.M., Rabkin, C.S., Gammon, M.D., Vaughan, T.L., Risch, H.A., Schoenberg, J.B. et al. (2003) Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology, 124, 1193–1201.PubMedCrossRefGoogle Scholar
  30. 30.
    Zabaleta, J., Camargo, M.C., Ritchie, M.D., Piazuelo, M.B., Sierra, R.A., Turner, S.D. et al. (2011) Association of haplotypes of inflammation-related genes with gastric preneoplastic lesions in African Americans and Caucasians. Int. J Cancer, 128, 668–675.PubMedCrossRefGoogle Scholar
  31. 31.
    Banatvala, N., Mayo, K., Megraud, F., Jennings, R., Deeks, J.J., and Feldman, R.A. (1993) The cohort effect and Helicobacter pylori. J Infect. Dis., 168, 219–221.PubMedCrossRefGoogle Scholar
  32. 32.
    Lindkvist, P., Asrat, D., Nilsson, I., Tsega, E., Olsson, G.L., Wretlind, B. et al. (1996) Age at acquisition of Helicobacter pylori infection: comparison of a high and a low prevalence country. Scand. J Infect. Dis., 28, 181–184.PubMedCrossRefGoogle Scholar
  33. 33.
    Fiedorek, S.C., Malaty, H.M., Evans, D.L., Pumphrey, C.L., Casteel, H.B., Evans, D.J., Jr. et al. (1991) Factors influencing the epidemiology of Helicobacter pylori infection in children. Pediatrics, 88, 578–582.PubMedGoogle Scholar
  34. 34.
    Sitas, F., Yarnell, J., and Forman, D. (1992) Helicobacter pylori infection rates in relation to age and social class in a population of Welsh men. Gut, 33, 1582.PubMedCrossRefGoogle Scholar
  35. 35.
    Cover, T.L. and Blaser, M.J. (1992) Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol. Chem., 267, 10570–10575.PubMedGoogle Scholar
  36. 36.
    Ilver, D., Barone, S., Mercati, D., Lupetti, P., and Telford, J.L. (2004) Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell Microbiol., 6, 167–174.PubMedCrossRefGoogle Scholar
  37. 37.
    Leunk, R.D., Johnson, P.T., David, B.C., Kraft, W.G., and Morgan, D.R. (1988) Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med. Microbiol., 26, 93–99.PubMedCrossRefGoogle Scholar
  38. 38.
    Szabo, I., Brutsche, S., Tombola, F., Moschioni, M., Satin, B., Telford, J.L. et al. (1999) Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J, 18, 5517–5527.PubMedCrossRefGoogle Scholar
  39. 39.
    Tombola, F., Morbiato, L., Del, G.G., Rappuoli, R., Zoratti, M., and Papini, E. (2001) The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J Clin. Invest, 108, 929–937.PubMedGoogle Scholar
  40. 40.
    Mobley, H.L., Island, M.D., and Hausinger, R.P. (1995) Molecular biology of microbial ureases. Microbiol. Rev., 59, 451–480.PubMedGoogle Scholar
  41. 41.
    Eaton, K.A., Brooks, C.L., Morgan, D.R., and Krakowka, S. (1991) Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun., 59, 2470–2475.PubMedGoogle Scholar
  42. 42.
    Eaton, K.A. and Krakowka, S. (1994) Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect. Immun., 62, 3604–3607.PubMedGoogle Scholar
  43. 43.
    Bauerfeind, P., Garner, R., Dunn, B.E., and Mobley, H.L. (1997) Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut, 40, 25–30.PubMedGoogle Scholar
  44. 44.
    Goodwin, C.S., Armstrong, J.A., and Marshall, B.J. (1986) Campylobacter pyloridis, gastritis, and peptic ulceration. J Clin. Pathol., 39, 353–365.PubMedCrossRefGoogle Scholar
  45. 45.
    Smoot, D.T., Mobley, H.L., Chippendale, G.R., Lewison, J.F., and Resau, J.H. (1990) Helicobacter pylori urease activity is toxic to human gastric epithelial cells. Infect. Immun., 58, 1992–1994.PubMedGoogle Scholar
  46. 46.
    Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287, 1497–1500.PubMedCrossRefGoogle Scholar
  47. 47.
    Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P.R. et al. (2000) Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol., 2, 155–164.PubMedCrossRefGoogle Scholar
  48. 48.
    Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J., and Covacci, A. (2002) c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol., 43, 971–980.PubMedCrossRefGoogle Scholar
  49. 49.
    Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. et al. (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295, 683–686.PubMedCrossRefGoogle Scholar
  50. 50.
    Puls, J., Fischer, W., and Haas, R. (2002) Activation of Helicobacter pylori CagA by tyrosine phosphorylation is essential for dephosphorylation of host cell proteins in gastric epithelial cells. Mol. Microbiol., 43, 961–969.PubMedCrossRefGoogle Scholar
  51. 51.
    Loh, J.T., Torres, V.J., and Cover, T.L. (2007) Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res., 67, 4709–4715.PubMedCrossRefGoogle Scholar
  52. 52.
    Segal, E.D., Cha, J., Lo, J., Falkow, S., and Tompkins, L.S. (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A, 96, 14559–14564.PubMedCrossRefGoogle Scholar
  53. 53.
    Kunkel, S.L., Standiford, T., Kasahara, K., and Strieter, R.M. (1991) Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp. Lung Res., 17, 17–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Papoff, P., Fiorucci, P., Ottaviano, C., and Bucci, G. (1995) Interleukin-8: a potent neutrophil chemotactic factor. Arch. Dis. Child Fetal Neonatal Ed, 73, F54.PubMedCrossRefGoogle Scholar
  55. 55.
    Matsushima, K., Baldwin, E.T., and Mukaida, N. (1992) Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines. Chem. Immunol., 51, 236–265.PubMedCrossRefGoogle Scholar
  56. 56.
    Roebuck, K.A. (1999) Regulation of interleukin-8 gene expression. J. Interferon Cytokine Res., 19, 429–438.PubMedCrossRefGoogle Scholar
  57. 57.
    McGee, D.J., Radcliff, F.J., Mendz, G.L., Ferrero, R.L., and Mobley, H.L. (1999) Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J. Bacteriol., 181, 7314–7322.PubMedGoogle Scholar
  58. 58.
    Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D. et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388, 539–547.PubMedCrossRefGoogle Scholar
  59. 59.
    Alm, R.A., Ling, L.S., Moir, D.T., King, B.L., Brown, E.D., Doig, P.C. et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 397, 176–180.PubMedCrossRefGoogle Scholar
  60. 60.
    Sekowska, A., Danchin, A., and Risler, J.L. (2000) Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology, 146 (Pt 8), 1815–1828.PubMedGoogle Scholar
  61. 61.
    Tabor, C.W. and Tabor, H. (1984) Polyamines. Annu. Rev. Biochem., 53, 749–790.PubMedCrossRefGoogle Scholar
  62. 62.
    Roberts, S.C., Tancer, M.J., Polinsky, M.R., Gibson, K.M., Heby, O., and Ullman, B. (2004) Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J. Biol. Chem., 279, 23668–23678.PubMedCrossRefGoogle Scholar
  63. 63.
    Mendz, G.L. and Hazell, S.L. (1995) Aminoacid utilization by Helicobacter pylori. Int. J. Biochem. Cell Biol., 27, 1085–1093.PubMedCrossRefGoogle Scholar
  64. 64.
    Zabaleta, J., McGee, D.J., Zea, A.H., Hernandez, C.P., Rodriguez, P.C., Sierra, R.A. et al. (2004) Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J. Immunol., 173, 586–593.PubMedGoogle Scholar
  65. 65.
    Gobert, A.P., McGee, D.J., Akhtar, M., Mendz, G.L., Newton, J.C., Cheng, Y. et al. (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl. Acad. Sci. U. S. A, 98, 13844–13849.PubMedCrossRefGoogle Scholar
  66. 66.
    Chmiela, M., Lelwala-Guruge, J.A., Wadstrom, T., and Rudnicka, W. (1996) The stimulation and inhibition of T cell proliferation by Helicobacter pylori components. J. Physiol Pharmacol., 47, 195–202.PubMedGoogle Scholar
  67. 67.
    Rudnicka, W., Covacci, A., Wadstrom, T., and Chmiela, M. (1998) A recombinant fragment of Helicobacter pylori CagA affects proliferation of human cells. J. Physiol Pharmacol., 49, 111–119.PubMedGoogle Scholar
  68. 68.
    Meyer, F., Wilson, K.T., and James, S.P. (2000) Modulation of innate cytokine responses by products of Helicobacter pylori. Infect. Immun., 68, 6265–6272.PubMedCrossRefGoogle Scholar
  69. 69.
    Knipp, U., Birkholz, S., Kaup, W., and Opferkuch, W. (1996) Partial characterization of a cell proliferation-inhibiting protein produced by Helicobacter pylori. Infect. Immun., 64, 3491–3496.PubMedGoogle Scholar
  70. 70.
    Paziak-Domanska, B., Chmiela, M., Jarosinska, A., and Rudnicka, W. (2000) Potential role of CagA in the inhibition of T cell reactivity in Helicobacter pylori infections. Cell Immunol., 202, 136–139.PubMedCrossRefGoogle Scholar
  71. 71.
    Ricci, V., Ciacci, C., Zarrilli, R., Sommi, P., Tummuru, M.K., Del Vecchio, B.C. et al. (1996) Effect of Helicobacter pylori on gastric epithelial cell migration and proliferation in vitro: role of VacA and CagA. Infect. Immun., 64, 2829–2833.PubMedGoogle Scholar
  72. 72.
    Smoot, D.T., Wynn, Z., Elliott, T.B., Allen, C.R., Mekasha, G., Naab, T. et al. (1999) Effects of Helicobacter pylori on proliferation of gastric epithelial cells in vitro. Am. J. Gastroenterol., 94, 1508–1511.PubMedCrossRefGoogle Scholar
  73. 73.
    Rokkas, T., Ladas, S., Liatsos, C., Petridou, E., Papatheodorou, G., Theocharis, S. et al. (1999) Relationship of Helicobacter pylori CagA status to gastric cell proliferation and apoptosis. Dig. Dis. Sci., 44, 487–493.PubMedCrossRefGoogle Scholar
  74. 74.
    Kim, C.W., Choi, S.H., Chung, E.J., Lee, M.J., Byun, E.K., Ryu, M.H. et al. (1999) Alteration of signal-transducing molecules and phenotypical characteristics in peripheral blood lymphocytes from gastric carcinoma patients. Pathobiology, 67, 123–128.PubMedCrossRefGoogle Scholar
  75. 75.
    Takahashi, A., Kono, K., Amemiya, H., Iizuka, H., Fujii, H., and Matsumoto, Y. (2001) Elevated caspase-3 activity in peripheral blood T cells coexists with increased degree of T-cell apoptosis and down-regulation of TCR zeta molecules in patients with gastric cancer. Clin. Cancer Res., 7, 74–80.PubMedGoogle Scholar
  76. 76.
    Ishigami, S., Natsugoe, S., Miyazono, F., Tokuda, K., Nakajo, A., Matsumoto, M. et al. (2004) CD3 zeta expression of regional lymph node and peripheral blood lymphocytes in gastric cancer. Anticancer Res., 24, 2123–2126.PubMedGoogle Scholar
  77. 77.
    Roth, K.A., Kapadia, S.B., Martin, S.M., and Lorenz, R.G. (1999) Cellular immune responses are essential for the development of Helicobacter felis-associated gastric pathology. J. Immunol., 163, 1490–1497.PubMedGoogle Scholar
  78. 78.
    Mohammadi, M., Nedrud, J., Redline, R., Lycke, N., and Czinn, S.J. (1997) Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology, 113, 1848–1857.PubMedCrossRefGoogle Scholar
  79. 79.
    Nedrud, J.G., Mohammadi, M., Blanchard, T., Redline, R., and Czinn, S.J. (1998) TH1/TH2 lymphocyte responses in Helicobacter infections. In Hunt,R. and Tycgat,S. (eds.) Helicobacter pylori. Mechanisms to clinical cure. Kluwer Academics Publishers, Boston, pp 101–9.CrossRefGoogle Scholar
  80. 80.
    Bamford, K.B., Fan, X., Crowe, S.E., Leary, J.F., Gourley, W.K., Luthra, G.K. et al. (1998) Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology, 114, 482–492.PubMedCrossRefGoogle Scholar
  81. 81.
    Lindholm, C., Quiding-Jarbrink, M., Lonroth, H., Hamlet, A., and Svennerholm, A.M. (1998) Local cytokine response in Helicobacter pylori-infected subjects. Infect. Immun., 66, 5964–5971.PubMedGoogle Scholar
  82. 82.
    Yamaoka, Y., Kodama, T., Kita, M., Imanishi, J., Kashima, K., and Graham, D.Y. (2001) Relation between cytokines and Helicobacter pylori in gastric cancer. Helicobacter., 6, 116–124.PubMedCrossRefGoogle Scholar
  83. 83.
    Morris, S.M., Jr. (2004) Recent advances in arginine metabolism. Curr. Opin. Clin. Nutr. Metab Care, 7, 45–51.PubMedCrossRefGoogle Scholar
  84. 84.
    Roth, E., Steininger, R., Winkler, S., Langle, F., Grunberger, T., Fugger, R. et al. (1994) L-Arginine deficiency after liver transplantation as an effect of arginase efflux from the graft. Influence on nitric oxide metabolism. Transplantation, 57, 665–669.PubMedCrossRefGoogle Scholar
  85. 85.
    Zea, A.H., Rodriguez, P.C., Atkins, M.B., Hernandez, C., Signoretti, S., Zabaleta, J. et al. (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res., 65, 3044–3048.PubMedGoogle Scholar
  86. 86.
    Rodriguez, P.C., Quiceno, D.G., Zabaleta, J., Ortiz, B., Zea, A.H., Piazuelo, M.B. et al. (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res., 64, 5839–5849.PubMedCrossRefGoogle Scholar
  87. 87.
    Rodriguez, P.C., Zea, A.H., Culotta, K.S., Zabaleta, J., Ochoa, J.B., and Ochoa, A.C. (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J. Biol. Chem., 277, 21123–21129.PubMedCrossRefGoogle Scholar
  88. 88.
    Munder, M., Mollinedo, F., Calafat, J., Canchado, J., Gil-Lamaignere, C., Fuentes, J.M. et al. (2005) Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood, 105, 2549–2556.PubMedCrossRefGoogle Scholar
  89. 89.
    Munder, M., Schneider, H., Luckner, C., Giese, T., Langhans, C.D., Fuentes, J.M. et al. (2006) Suppression of T-cell functions by human granulocyte arginase. Blood, 108, 1627–1634.PubMedCrossRefGoogle Scholar
  90. 90.
    Kropf, P., Baud, D., Marshall, S.E., Munder, M., Mosley, A., Fuentes, J.M. et al. (2007) Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur. J. Immunol., 37, 935–945.PubMedCrossRefGoogle Scholar
  91. 91.
    Chang, C.I., Liao, J.C., and Kuo, L. (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res., 61, 1100–1106.PubMedGoogle Scholar
  92. 92.
    Mendez, J.D. and Arreola, M.A. (1992) Effect of L-arginine on pancreatic arginase activity and polyamines in alloxan treated rats. Biochem. Int., 28, 569–575.PubMedGoogle Scholar
  93. 93.
    Mori, M. and Gotoh, T. (2000) Regulation of nitric oxide production by arginine metabolic enzymes. Biochem. Biophys. Res. Commun., 275, 715–719.PubMedCrossRefGoogle Scholar
  94. 94.
    Murray, H.W. and Teitelbaum, R.F. (1992) L-arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J Infect. Dis., 165, 513–517.PubMedCrossRefGoogle Scholar
  95. 95.
    Das, P., Lahiri, A., Lahiri, A., and Chakravortty, D. (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS. Pathog., 6, e1000899.PubMedCrossRefGoogle Scholar
  96. 96.
    Hung, C.Y., Xue, J., and Cole, G.T. (2007) Virulence mechanisms of coccidioides. Ann. N. Y. Acad. Sci., 1111, 225–235.PubMedCrossRefGoogle Scholar
  97. 97.
    Luiking, Y.C., Poeze, M., Dejong, C.H., Ramsay, G., and Deutz, N.E. (2004) Sepsis: an arginine deficiency state? Crit Care Med., 32, 2135–2145.PubMedCrossRefGoogle Scholar
  98. 98.
    Luiking, Y.C., Poeze, M., Ramsay, G., and Deutz, N.E. (2005) The role of arginine in infection and sepsis. JPEN J Parenter. Enteral Nutr., 29, S70–S74.PubMedCrossRefGoogle Scholar
  99. 99.
    Molnar, B., Galamb, O., Sipos, F., Leiszter, K., and Tulassay, Z. (2010) Molecular pathogenesis of Helicobacter pylori infection: the role of bacterial virulence factors. Dig. Dis., 28, 604–608.PubMedCrossRefGoogle Scholar
  100. 100.
    Mori, M. and Gotoh, T. (2004) Arginine metabolic enzymes, nitric oxide and infection. J Nutr., 134, 2820S–2825S.PubMedGoogle Scholar
  101. 101.
    Wanasen, N. and Soong, L. (2008) L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol. Res., 41, 15–25.PubMedCrossRefGoogle Scholar
  102. 102.
    Mendz, G.L., Holmes, E.M., and Ferrero, R.L. (1998) In situ characterization of Helicobacter pylori arginase. Biochim. Biophys. Acta, 1388, 465–477.PubMedCrossRefGoogle Scholar
  103. 103.
    Lewis, N.D., Asim, M., Barry, D.P., Singh, K., de, S.T., Boucher, J.L. et al. (2010) Arginase II restricts host defense to Helicobacter pylori by attenuating inducible nitric oxide synthase translation in macrophages. J Immunol., 184, 2572–2582.PubMedCrossRefGoogle Scholar
  104. 104.
    Gobert, A.P., Cheng, Y., Wang, J.Y., Boucher, J.L., Iyer, R.K., Cederbaum, S.D. et al. (2002) Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol., 168, 4692–4700.PubMedGoogle Scholar
  105. 105.
    Lewis, N.D., Asim, M., Barry, D.P., de, S.T., Singh, K., Piazuelo, M.B. et al. (2011) Immune Evasion by Helicobacter pylori Is Mediated by Induction of Macrophage Arginase II. J Immunol., 186, 3632–3641.PubMedCrossRefGoogle Scholar
  106. 106.
    Hoffman, S.M. and Fleming, S.D. (2010) Natural Helicobacter infection modulates mouse intestinal muscularis macrophage responses. Cell Biochem. Funct., 28, 686–694.PubMedCrossRefGoogle Scholar
  107. 107.
    el-Zimaity, H.M. and Graham, D.Y. (2001) Ultrastructural evidence of in vivo phagocytosis of Helicobacter pylori. Ultrastruct. Pathol., 25, 159.PubMedCrossRefGoogle Scholar
  108. 108.
    Zu, Y., Cassai, N.D., and Sidhu, G.S. (2000) Light microscopic and ultrastructural evidence of in vivo phagocytosis of Helicobacter pylori by neutrophils. Ultrastruct. Pathol., 24, 319–323.PubMedCrossRefGoogle Scholar
  109. 109.
    Ozbek, A., Ozbek, E., Dursun, H., Kalkan, Y., and Demirci, T. (2010) Can Helicobacter pylori invade human gastric mucosa?: an in vivo study using electron microscopy, immunohistochemical methods, and real-time polymerase chain reaction. J Clin. Gastroenterol., 44, 416–422.PubMedGoogle Scholar
  110. 110.
    Ramarao, N., Gray-Owen, S.D., Backert, S., and Meyer, T.F. (2000) Helicobacter pylori inhibits phagocytosis by professional phagocytes involving type IV secretion components. Mol. Microbiol., 37, 1389–1404.PubMedCrossRefGoogle Scholar
  111. 111.
    Allen, L.A., Schlesinger, L.S., and Kang, B. (2000) Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J Exp. Med., 191, 115–128.PubMedCrossRefGoogle Scholar
  112. 112.
    Zheng, P.Y. and Jones, N.L. (2003) Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell Microbiol., 5, 25–40.PubMedCrossRefGoogle Scholar
  113. 113.
    Ramarao, N. and Meyer, T.F. (2001) Helicobacter pylori resists phagocytosis by macrophages: quantitative assessment by confocal microscopy and fluorescence-activated cell sorting. Infect. Immun., 69, 2604–2611.PubMedCrossRefGoogle Scholar
  114. 114.
    Wang, Y.H., Wu, J.J., and Lei, H.Y. (2009) When Helicobacter pylori invades and replicates in the cells. Autophagy., 5, 540–542.PubMedCrossRefGoogle Scholar
  115. 115.
    Turner, D.M., Williams, D.M., Sankaran, D., Lazarus, M., Sinnott, P.J., and Hutchinson, I.V. (1997) An investigation of polymorphism in the interleukin-10 gene promoter. Eur. J. Immunogenet., 24, 1–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Rad,R., Dossumbekova, A., Neu, B., Lang, R., Bauer, S., Saur, D. et al. (2004) Cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation, and host specific colonisation during Helicobacter pylori infection. Gut, 53, 1082–1089.PubMedCrossRefGoogle Scholar
  117. 117.
    Hwang, I.R., Kodama, T., Kikuchi, S., Sakai, K., Peterson, L.E., Graham, D.Y. et al. (2002) Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. Gastroenterology, 123, 1793–1803.PubMedCrossRefGoogle Scholar
  118. 118.
    Pociot, F., Molvig, J., Wogensen, L., Worsaae, H., and Nerup, J. (1992) A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur. J. Clin. Invest, 22, 396–402.PubMedCrossRefGoogle Scholar
  119. 119.
    Kroeger, K.M., Carville, K.S., and Abraham, L.J. (1997) The −308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol. Immunol., 34, 391–399.PubMedCrossRefGoogle Scholar
  120. 120.
    Wilson, A.G., Symons, J.A., McDowell, T.L., McDevitt, H.O., and Duff, G.W. (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc. Natl. Acad. Sci. U. S. A, 94, 3195–3199.PubMedCrossRefGoogle Scholar
  121. 121.
    Fishman, D., Faulds, G., Jeffery, R., Mohamed-Ali, V., Yudkin, J.S., Humphries, S. et al. (1998) The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest, 102, 1369–1376.PubMedCrossRefGoogle Scholar
  122. 122.
    Terry, C.F., Loukaci, V., and Green, F.R. (2000) Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J. Biol. Chem., 275, 18138–18144.PubMedCrossRefGoogle Scholar
  123. 123.
    Abdallah, A.N., Cucchi-Mouillot, P., Biteau, N., Cassaigne, A., Haras, D., and Iron, A. (1999) Analysis of the polymorphism of the tumour necrosis factor (TNF) gene and promoter and of circulating TNF-alpha levels in heart-transplant patients suffering or not suffering from severe rejection. Eur. J. Immunogenet., 26, 249–255.PubMedCrossRefGoogle Scholar
  124. 124.
    Bunnapradist, S. and Jordan, S.C. (2000) The role of cytokines and cytokine gene polymorphism in T-cell activation and allograft rejection. Ann. Acad. Med. Singapore, 29, 412–416.PubMedGoogle Scholar
  125. 125.
    Hajeer, A.H., Lazarus, M., Turner, D., Mageed, R.A., Vencovsky, J., Sinnott, P. et al. (1998) IL-10 gene promoter polymorphisms in rheumatoid arthritis. Scand. J. Rheumatol., 27, 142–145.PubMedCrossRefGoogle Scholar
  126. 126.
    Cabrera, M., Shaw, M.A., Sharples, C., Williams, H., Castes, M., Convit, J. et al. (1995) Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J. Exp. Med., 182, 1259–1264.PubMedCrossRefGoogle Scholar
  127. 127.
    Wilkinson, R.J., Patel, P., Llewelyn, M., Hirsch, C.S., Pasvol, G., Snounou, G. et al. (1999) Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis. J. Exp. Med., 189, 1863–1874.PubMedCrossRefGoogle Scholar
  128. 128.
    SEER. SEER Cancer Statistics Review 1975-2004. http://seer.cancer.gov/csr/1975_2004/results_merged/topic_inc_trends.pdf. 2004.
  129. 129.
  130. 130.
    Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B. et al. (2002) The structure of haplotype blocks in the human genome. Science, 296, 2225–2229.PubMedCrossRefGoogle Scholar
  131. 131.
    Huang, W., He, Y., Wang, H., Wang, Y., Liu, Y., Wang, Y. et al. (2006) Linkage disequilibrium sharing and haplotype-tagged SNP portability between populations. Proc Natl. Acad. Sci. U. S. A, 103, 1418–1421.PubMedCrossRefGoogle Scholar
  132. 132.
    Epplein, M., Signorello, L.B., Zheng, W., Peek, R.M., Jr., Michel, A., Williams, S.M. et al. (2011) Race, African ancestry, and Helicobacter pylori infection in a low-income United States population. Cancer Epidemiol. Biomarkers Prev..Google Scholar
  133. 133.
    Lee, C.G., Gottesman, M.M., Cardarelli, C.O., Ramachandra, M., Jeang, K.T., Ambudkar, S.V. et al. (1998) HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry, 37, 3594–3601.PubMedCrossRefGoogle Scholar
  134. 134.
    Lee, C.G. and Gottesman, M.M. (1998) HIV-1 protease inhibitors and the MDR1 multidrug transporter. J. Clin. Invest, 101, 287–288.PubMedCrossRefGoogle Scholar
  135. 135.
    Balram, C., Sharma, A., Sivathasan, C., and Lee, E.J. (2003) Frequency of C3435T single nucleotide MDR1 genetic polymorphism in an Asian population: phenotypic-genotypic correlates. Br. J. Clin. Pharmacol., 56, 78–83.PubMedCrossRefGoogle Scholar
  136. 136.
    Hitzl, M., Drescher, S., van der, K.H., Schaffeler, E., Fischer, J., Schwab, M. et al. (2001) The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics, 11, 293–298.PubMedCrossRefGoogle Scholar
  137. 137.
    Hoffmeyer, S., Burk, O., von, R.O., Arnold, H.P., Brockmoller, J., Johne, A. et al. (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. U. S. A, 97, 3473–3478.PubMedCrossRefGoogle Scholar
  138. 138.
    Tanabe, M., Ieiri, I., Nagata, N., Inoue, K., Ito, S., Kanamori, Y. et al. (2001) Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J. Pharmacol. Exp. Ther., 297, 1137–1143.PubMedGoogle Scholar
  139. 139.
    Kim, R.B., Leake, B.F., Choo, E.F., Dresser, G.K., Kubba, S.V., Schwarz, U.I. et al. (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther., 70, 189–199.PubMedCrossRefGoogle Scholar
  140. 140.
    Sakaeda, T., Nakamura, T., Horinouchi, M., Kakumoto, M., Ohmoto, N., Sakai, T. et al. (2001) MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm. Res., 18, 1400–1404.PubMedCrossRefGoogle Scholar
  141. 141.
    Fellay, J., Marzolini, C., Meaden, E.R., Back, D.J., Buclin, T., Chave, J.P. et al. (2002) Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet, 359, 30–36.PubMedCrossRefGoogle Scholar
  142. 142.
    von, A.N., Richter, M., Grupp, C., Ringe, B., Oellerich, M., and Armstrong, V.W. (2001) No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem., 47, 1048–1052.Google Scholar
  143. 143.
    Tang, K., Ngoi, S.M., Gwee, P.C., Chua, J.M., Lee, E.J., Chong, S.S. et al. (2002) Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics, 12, 437–450.PubMedCrossRefGoogle Scholar
  144. 144.
    Machado, J.C., Pharoah, P., Sousa, S., Carvalho, R., Oliveira, C., Figueiredo, C. et al. (2001) Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology, 121, 823–829.PubMedCrossRefGoogle Scholar
  145. 145.
    Sicinschi, L.A., Lopez-Carrillo, L., Camargo, M.C., Correa, P., Sierra, R.A., Henry, R.R. et al. (2006) Gastric cancer risk in a Mexican population: role of Helicobacter pylori CagA positive infection and polymorphisms in interleukin-1 and −10 genes. Int. J. Cancer, 118, 649–657.PubMedCrossRefGoogle Scholar
  146. 146.
    Xue, H., Lin, B., Ni, P., Xu, H., and Huang, G. (2010) Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: a meta-analysis. J Gastroenterol. Hepatol., 25, 1604–1617.PubMedCrossRefGoogle Scholar
  147. 147.
    Wang, P., Xia, H.H., Zhang, J.Y., Dai, L.P., Xu, X.Q., and Wang, K.J. (2007) Association of interleukin-1 gene polymorphisms with gastric cancer: a meta-analysis. Int. J Cancer, 120, 552–562.PubMedCrossRefGoogle Scholar
  148. 148.
    Camargo, M.C., Mera, R., Correa, P., Peek, R.M., Jr., Fontham, E.T., Goodman, K.J. et al. (2006) Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer Epidemiol. Biomarkers Prev., 15, 1674–1687.PubMedCrossRefGoogle Scholar
  149. 149.
    Persson, C., Canedo, P., Machado, J.C., El-Omar, E.M., and Forman, D. (2011) Polymorphisms in inflammatory response genes and their association with gastric cancer: A HuGE systematic review and meta-analyses. Am. J Epidemiol., 173, 259–270.PubMedCrossRefGoogle Scholar
  150. 150.
    Beales, I.L. and Calam, J. (1998) Interleukin 1 beta and tumour necrosis factor alpha inhibit acid secretion in cultured rabbit parietal cells by multiple pathways. Gut, 42, 227–234.PubMedCrossRefGoogle Scholar
  151. 151.
    Chen, H., Wilkins, L.M., Aziz, N., Cannings, C., Wyllie, D.H., Bingle, C. et al. (2006) Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. Hum. Mol. Genet., 15, 519–529.PubMedCrossRefGoogle Scholar
  152. 152.
    Arend, W.P., Malyak, M., Guthridge, C.J., and Gabay, C. (1998) Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol., 16, 27–55.PubMedCrossRefGoogle Scholar
  153. 153.
    Andus, T., Daig, R., Vogl, D., Aschenbrenner, E., Lock, G., Hollerbach, S. et al. (1997) Imbalance of the interleukin 1 system in colonic mucosa--association with intestinal inflammation and interleukin 1 receptor antagonist (corrected) genotype 2. Gut, 41, 651–657.PubMedCrossRefGoogle Scholar
  154. 154.
    Tountas, N.A., Casini-Raggi, V., Yang, H., Di Giovine, F.S., Vecchi, M., Kam, L. et al. (1999) Functional and ethnic association of allele 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology, 117, 806–813.PubMedCrossRefGoogle Scholar
  155. 155.
    Shih, C.M., Lee, Y.L., Chiou, H.L., Chen, W., Chang, G.C., Chou, M.C. et al. (2006) Association of TNF-alpha polymorphism with susceptibility to and severity of non-small cell lung cancer. Lung Cancer, 52, 15–20.PubMedCrossRefGoogle Scholar
  156. 156.
    Zambon, C.F., Basso, D., Navaglia, F., Belluco, C., Falda, A., Fogar, P. et al. (2005) Pro- and anti-inflammatory cytokines gene polymorphisms and Helicobacter pylori infection: interactions influence outcome. Cytokine, 29, 141–152.PubMedCrossRefGoogle Scholar
  157. 157.
    Hellmig, S., Fischbach, W., Goebeler-Kolve, M.E., Folsch, U.R., Hampe, J., and Schreiber, S. (2005) A functional promotor polymorphism of TNF-alpha is associated with primary gastric B-Cell lymphoma. Am. J. Gastroenterol., 100, 2644–2649.PubMedCrossRefGoogle Scholar
  158. 158.
    Kido, S., Kitadai, Y., Hattori, N., Haruma, K., Kido, T., Ohta, M. et al. (2001) Interleukin 8 and vascular endothelial growth factor—prognostic factors in human gastric carcinomas? Eur. J. Cancer, 37, 1482–1487.PubMedCrossRefGoogle Scholar
  159. 159.
    Kitadai, Y., Haruma, K., Mukaida, N., Ohmoto, Y., Matsutani, N., Yasui, W. et al. (2000) Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin. Cancer Res., 6, 2735–2740.PubMedGoogle Scholar
  160. 160.
    Savage, S.A., Abnet, C.C., Mark, S.D., Qiao, Y.L., Dong, Z.W., Dawsey, S.M. et al. (2004) Variants of the IL8 and IL8RB genes and risk for gastric cardia adenocarcinoma and esophageal squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev., 13, 2251–2257.PubMedGoogle Scholar
  161. 161.
    Kato, I., Van Doorn, L.J., Canzian, F., Plummer, M., Franceschi, S., Vivas, J. et al. (2006) Host-bacterial interaction in the development of gastric precancerous lesions in a high risk population for gastric cancer in Venezuela. Int. J. Cancer, 119, 1666–1671.PubMedCrossRefGoogle Scholar
  162. 162.
    Mege, J.L., Meghari, S., Honstettre, A., Capo, C., and Raoult, D. (2006) The two faces of interleukin 10 in human infectious diseases. Lancet Infect. Dis., 6, 557–569.PubMedCrossRefGoogle Scholar
  163. 163.
    Havranek, E., Howell, W.M., Fussell, H.M., Whelan, J.A., Whelan, M.A., and Pandha, H.S. (2005) An interleukin-10 promoter polymorphism may influence tumor development in renal cell carcinoma. J. Urol., 173, 709–712.PubMedCrossRefGoogle Scholar
  164. 164.
    Nikolova, P.N., Pawelec, G.P., Mihailova, S.M., Ivanova, M.I., Myhailova, A.P., Baltadjieva, D.N. et al. (2007) Association of cytokine gene polymorphisms with malignant melanoma in Caucasian population. Cancer Immunol. Immunother., 56, 371–379.PubMedCrossRefGoogle Scholar
  165. 165.
    Seifart, C., Plagens, A., Dempfle, A., Clostermann, U., Vogelmeier, C., von, W.P. et al. (2005) TNF-alpha, TNF-beta, IL-6, and IL-10 polymorphisms in patients with lung cancer. Dis. Markers, 21, 157–165.PubMedCrossRefGoogle Scholar
  166. 166.
    Sakamoto, H., Yoshimura, K., Saeki, N., Katai, H., Shimoda, T., Matsuno, Y. et al. (2008) Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat. Genet., 40, 730–740.PubMedCrossRefGoogle Scholar
  167. 167.
    Lu, Y., Chen, J., Ding, Y., Jin, G., Wu, J., Huang, H. et al. (2010) Genetic variation of PSCA gene is associated with the risk of both diffuse- and intestinal-type gastric cancer in a Chinese population. Int. J Cancer, 127, 2183–2189.PubMedCrossRefGoogle Scholar
  168. 168.
    Abnet, C.C., Freedman, N.D., Hu, N., Wang, Z., Yu, K., Shu, X.O. et al. (2010) A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat. Genet., 42, 764–767.PubMedCrossRefGoogle Scholar
  169. 169.
    Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6-21.PubMedCrossRefGoogle Scholar
  170. 170.
    Wang, Y. and Leung, F.C. (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics., 20, 1170–1177.PubMedCrossRefGoogle Scholar
  171. 171.
    Tate, P.H. and Bird, A.P. (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev., 3, 226–231.PubMedCrossRefGoogle Scholar
  172. 172.
    Nan, X., Meehan, R.R., and Bird, A. (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res., 21, 4886–4892.PubMedCrossRefGoogle Scholar
  173. 173.
    Prendergast, G.C. and Ziff, E.B. (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science, 251, 186–189.PubMedCrossRefGoogle Scholar
  174. 174.
    Watt, F. and Molloy, P.L. (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev., 2, 1136–1143.PubMedCrossRefGoogle Scholar
  175. 175.
    Jones, P.L., Veenstra, G.J., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N. et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet., 19, 187–191.PubMedCrossRefGoogle Scholar
  176. 176.
    Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386–389.PubMedCrossRefGoogle Scholar
  177. 177.
    Kim, G.D., Ni, J., Kelesoglu, N., Roberts, R.J., and Pradhan, S. (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J, 21, 4183–4195.PubMedCrossRefGoogle Scholar
  178. 178.
    Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99, 247–257.PubMedCrossRefGoogle Scholar
  179. 179.
    Fan, H., Liu, D., Qiu, X., Qiao, F., Wu, Q., Su, X. et al. (2010) A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC. Med., 8, 12.PubMedCrossRefGoogle Scholar
  180. 180.
    Esteller, M. (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 21, 5427–5440.PubMedCrossRefGoogle Scholar
  181. 181.
    Yamashita, S., Tsujino, Y., Moriguchi, K., Tatematsu, M., and Ushijima, T. (2006) Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2′-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci., 97, 64–71.PubMedCrossRefGoogle Scholar
  182. 182.
    Schneider, B.G., Peng, D.F., Camargo, M.C., Piazuelo, M.B., Sicinschi, L.A., Mera, R. et al. (2010) Promoter DNA hypermethylation in gastric biopsies from subjects at high and low risk for gastric cancer. Int. J Cancer, 127, 2588–2597.PubMedCrossRefGoogle Scholar
  183. 183.
    Shen, H., Xu, Y., Zheng, Y., Qian, Y., Yu, R., Qin, Y. et al. (2001) Polymorphisms of 5,10-methylenetetrahydrofolate reductase and risk of gastric cancer in a Chinese population: a case-control study. Int. J Cancer, 95, 332–336.PubMedCrossRefGoogle Scholar
  184. 184.
    Neves Filho, E.H., Alves, M.K., Lima, V.P., and Rabenhorst, S.H. (2010) MTHFR C677T polymorphism and differential methylation status in gastric cancer: an association with Helicobacter pylori infection. Virchows Arch., 457, 627–633.PubMedCrossRefGoogle Scholar
  185. 185.
    Dong, C.X., Deng, D.J., Pan, K.F., Zhang, L., Zhang, Y., Zhou, J. et al. (2009) Promoter methylation of p16 associated with Helicobacter pylori infection in precancerous gastric lesions: a population-based study. Int. J Cancer, 124, 434–439.PubMedCrossRefGoogle Scholar
  186. 186.
    Kague, E., Thomazini, C.M., Pardini, M.I., de, C.F., Leite, C.V., and Pinheiro, N.A. (2010) Methylation status of CDH1 gene in samples of gastric mucous from Brazilian patients with chronic gastritis infected by Helicobacter pylori. Arq Gastroenterol., 47, 7–12.PubMedGoogle Scholar
  187. 187.
    Alves, M.K., Lima, V.P., Ferrasi, A.C., Rodrigues, M.A., De Moura Campos Pardini MI, and Rabenhorst, S.H. (2010) CDKN2A promoter methylation is related to the tumor location and histological subtype and associated with Helicobacter pylori flaA(+) strains in gastric adenocarcinomas. APMIS, 118, 297–307.PubMedCrossRefGoogle Scholar
  188. 188.
    Chan, A.O., Peng, J.Z., Lam, S.K., Lai, K.C., Yuen, M.F., Cheung, H.K. et al. (2006) Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut, 55, 463–468.PubMedCrossRefGoogle Scholar
  189. 189.
    Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P. et al. (1998) E-cadherin germline mutations in familial gastric cancer. Nature, 392, 402–405.PubMedCrossRefGoogle Scholar
  190. 190.
    Yoo, E.J., Park, S.Y., Cho, N.Y., Kim, N., Lee, H.S., Kim, D. et al. (2010) Influence of IL1B polymorphism on CpG island hypermethylation in Helicobacter pylori-infected gastric cancer. Virchows Arch., 456, 647–652.PubMedCrossRefGoogle Scholar
  191. 191.
    McMichael, A.J., McCall, M.G., Hartshorne, J.M., and Woodings, T.L. (1980) Patterns of gastro-intestinal cancer in European migrants to Australia: the role of dietary change. Int. J Cancer, 25, 431–437.PubMedCrossRefGoogle Scholar
  192. 192.
    Haenszel, W. and Kurihara, M. (1968) Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl. Cancer Inst., 40, 43–68.PubMedGoogle Scholar
  193. 193.
    Plummer, M., Franceschi, S., and Munoz, N. (2004) Epidemiology of gastric cancer. IARC Sci. Publ.,311–326.Google Scholar
  194. 194.
    Lunet, N., Valbuena, C., Vieira, A.L., Lopes, C., Lopes, C., David, L. et al. (2007) Fruit and vegetable consumption and gastric cancer by location and histological type: case-control and meta-analysis. Eur. J Cancer Prev., 16, 312–327.PubMedCrossRefGoogle Scholar
  195. 195.
    Terry, P., Nyren, O., and Yuen, J. (1998) Protective effect of fruits and vegetables on stomach cancer in a cohort of Swedish twins. Int. J Cancer, 76, 35–37.PubMedCrossRefGoogle Scholar
  196. 196.
    Jansen, M.C., Bueno-de-Mesquita, H.B., Rasanen, L., Fidanza, F., Menotti, A., Nissinen, A. et al. (1999) Consumption of plant foods and stomach cancer mortality in the seven countries study. Is grain consumption a risk factor? Seven Countries Study Research Group. Nutr. Cancer, 34, 49–55.PubMedCrossRefGoogle Scholar
  197. 197.
    Risch, H.A., Jain, M., Choi, N.W., Fodor, J.G., Pfeiffer, C.J., Howe, G.R. et al. (1985) Dietary factors and the incidence of cancer of the stomach. Am. J Epidemiol., 122, 947–959.PubMedGoogle Scholar
  198. 198.
    Nomura, A.M., Hankin, J.H., Kolonel, L.N., Wilkens, L.R., Goodman, M.T., and Stemmermann, G.N. (2003) Case-control study of diet and other risk factors for gastric cancer in Hawaii (United States). Cancer Causes Control, 14, 547–558.PubMedCrossRefGoogle Scholar
  199. 199.
    Lagiou, P., Samoli, E., Lagiou, A., Peterson, J., Tzonou, A., Dwyer, J. et al. (2004) Flavonoids, vitamin C and adenocarcinoma of the stomach. Cancer Causes Control, 15, 67–72.PubMedCrossRefGoogle Scholar
  200. 200.
    Ramon, J.M., Serra-Majem, L., Cerdo, C., and Oromi, J. (1993) Nutrient intake and gastric cancer risk: a case-control study in Spain. Int. J Epidemiol., 22, 983–988.PubMedCrossRefGoogle Scholar
  201. 201.
    Kaaks, R., Tuyns, A.J., Haelterman, M., and Riboli, E. (1998) Nutrient intake patterns and gastric cancer risk: a case-control study in Belgium. Int. J Cancer, 78, 415–420.PubMedCrossRefGoogle Scholar
  202. 202.
    Palli, D., Russo, A., and Decarli, A. (2001) Dietary patterns, nutrient intake and gastric cancer in a high-risk area of Italy. Cancer Causes Control, 12, 163–172.PubMedCrossRefGoogle Scholar
  203. 203.
    Mayne, S.T., Risch, H.A., Dubrow, R., Chow, W.H., Gammon, M.D., Vaughan, T.L. et al. (2001) Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol. Biomarkers Prev., 10, 1055–1062.PubMedGoogle Scholar
  204. 204.
    De, S.E., Correa, P., Boffetta, P., eo-Pellegrini, H., Ronco, A.L., and Mendilaharsu, M. (2004) Dietary patterns and risk of gastric cancer: a case-control study in Uruguay. Gastric. Cancer, 7, 211–220.CrossRefGoogle Scholar
  205. 205.
    Campos, F., Carrasquilla, G., Koriyama, C., Serra, M., Carrascal, E., Itoh, T. et al. (2006) Risk factors of gastric cancer specific for tumor location and histology in Cali, Colombia. World J Gastroenterol., 12, 5772–5779.PubMedGoogle Scholar
  206. 206.
    Wirth, H.P., Beins, M.H., Yang, M., Tham, K.T., and Blaser, M.J. (1998) Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect. Immun., 66, 4856–4866.PubMedGoogle Scholar
  207. 207.
    Dey, A., Yokota, K., Kobayashi, K., Oguma, K., Hirai, Y., and Akagi, T. (1998) Antibody and cytokine responses in Helicobacter pylori-infected various mouse strains. Acta Med. Okayama, 52, 41–48.PubMedGoogle Scholar
  208. 208.
    Marchetti, M., Arico, B., Burroni, D., Figura, N., Rappuoli, R., and Ghiara, P. (1995) Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science, 267, 1655–1658.PubMedCrossRefGoogle Scholar
  209. 209.
    D’Elios, M.M., Manghetti, M., Almerigogna, F., Amedei, A., Costa, F., Burroni, D. et al. (1997) Different cytokine profile and antigen-specificity repertoire in Helicobacter pylori-specific T cell clones from the antrum of chronic gastritis patients with or without peptic ulcer. Eur. J. Immunol., 27, 1751–1755.PubMedCrossRefGoogle Scholar
  210. 210.
    D’Elios, M.M., Manghetti, M., De, C.M., Costa, F., Baldari, C.T., Burroni, D. et al. (1997) T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J. Immunol., 158, 962–967.PubMedGoogle Scholar
  211. 211.
    Sommer, F., Faller, G., Konturek, P., Kirchner, T., Hahn, E.G., Zeus, J. et al. (1998) Antrum- and corpus mucosa-infiltrating CD4(+) lymphocytes in Helicobacter pylori gastritis display a Th1 phenotype. Infect. Immun., 66, 5543–5546.PubMedGoogle Scholar
  212. 212.
    Maeda, S., Yoshida, H., Ogura, K., Mitsuno, Y., Hirata, Y., Yamaji, Y. et al. (2000) H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology, 119, 97–108.PubMedCrossRefGoogle Scholar
  213. 213.
    Yasumoto, K., Okamoto, S., Mukaida, N., Murakami, S., Mai, M., and Matsushima, K. (1992) Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J. Biol. Chem., 267, 22506–22511.PubMedGoogle Scholar
  214. 214.
    Mitsuno, Y., Yoshida, H., Maeda, S., Ogura, K., Hirata, Y., Kawabe, T. et al. (2001) Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut, 49, 18–22.PubMedCrossRefGoogle Scholar
  215. 215.
    Karttunen, R.A., Karttunen, T.J., Yousfi, M.M., el-Zimaity, H.M., Graham, D.Y., and el-Zaatari, F.A. (1997) Expression of mRNA for interferon-gamma, interleukin-10, and interleukin-12 (p40) in normal gastric mucosa and in mucosa infected with Helicobacter pylori. Scand. J. Gastroenterol., 32, 22–27.PubMedCrossRefGoogle Scholar
  216. 216.
    Ye, G., Barrera, C., Fan, X., Gourley, W.K., Crowe, S.E., Ernst, P.B. et al. (1997) Expression of B7-1 and B7-2 costimulatory molecules by human gastric epithelial cells: potential role in CD4+ T cell activation during Helicobacter pylori infection. J. Clin. Invest, 99, 1628–1636.PubMedCrossRefGoogle Scholar
  217. 217.
    Allen, L.A., Schlesinger, L.S., and Kang, B. (2000) Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med., 191, 115–128.PubMedCrossRefGoogle Scholar
  218. 218.
    Kuwahara, H., Miyamoto, Y., Akaike, T., Kubota, T., Sawa, T., Okamoto, S. et al. (2000) Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect. Immun., 68, 4378–4383.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pediatrics and Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations