Cancer Epigenetics pp 395-410

Part of the Methods in Molecular Biology book series (MIMB, volume 863) | Cite as

Role of Epigenetics in Cancer Health Disparities

Protocol

Abstract

Cancer disparities in incidence and death rates exist among various racial and ethnic groups. These disparities are thought to be due to socioeconomic status, culture, diet, stress, the environment, and biology. Biological functions, such as epigenetic processes, are affected by all these causal factors and extend throughout the life course. Epigenetic processes, in particular DNA methylation, may play a role in the induction of phenotypes with increased cancer risk due to exposure to these multiple factors. DNA methylation is known to cause changes in gene expression of key regulatory genes in cancer. There are limited studies in which epigenetic changes have been explored to address cancer disparities in various racial and ethnic populations. These few studies have reported significant epigenetic differences in various racial and ethnic groups that could account for the differences seen in tumor initiation, progression, aggressiveness, and outcome of these cancers. Genes differentially methylated among these racially and ethnically diverse populations were involved in important cellular functions, such as tumor growth, tumor suppression, hormone receptors, and genes involved in tumor metastasis. Epigenetic research with the advancement in technology has helped identify biomarkers, therapeutic targets, and understand cancer causation in the general population. Unfortunately, these advances in technology have not been applied to explore the basis for cancer health disparities. More research in epigenetics is needed that will enhance our understanding of the determinants of cancer across various diverse populations and ultimately reduce cancer health disparities.

Key words

Cancer disparities Epigenetics Race Ethnic DNA methylation 

References

  1. 1.
    Jemal, A., Siegel, R., Xu, J. and Ward, E. (2010) Cancer Statistics, 2010. CA Cancer J Clin 60, 277–300.PubMedCrossRefGoogle Scholar
  2. 2.
    McCracken, M., Olsen, M., Chen, M.S. Jr., Jemal, A., Thun, M., Cokkinides, V., Deapen, D. and Ward, E. (2007) Cancer Incidence, Mortality, and Associated Risk Factors Among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese Ethnicities. CA Cancer J Clin 57, 190–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen, M.S. Jr. (2005) Cancer health disparities among Asian Americans: what we do and what we need to do. Cancer 104, 2895–902.PubMedCrossRefGoogle Scholar
  4. 4.
    Albain, K.S., Unger, J.M., Crowley, J.J., Coltman, C.A. Jr. and Hershman, D.L. (2009) Racial disparities in cancer survival among randomized clinical trials patients of the Southwest Oncology Group. J Natl Cancer Inst 101, 984–992.PubMedCrossRefGoogle Scholar
  5. 5.
    Godley, P.A., Schenck, A.P., Amamoo, M.A., Schoenbach, V.J., Peacock, S., Manning, M., Symons, M. and Talcott, J.A. (2003) Racial differences in mortality among Medicare recipients after treatment for localized prostate cancer. J Natl Cancer Inst 95, 1702–1710.PubMedCrossRefGoogle Scholar
  6. 6.
    Chu, K.C., Miller, B.A., and Springfield, S. A. (2007) Measures of racial/ethnic health disparities in cancer mortality rates and the influence of socioeconomic status. J Nat Med Assoc 99, 1092–1100.Google Scholar
  7. 7.
    Freedman, H. and Chu, K. (2005) Determinants of cancer disparities: barriers to cancer screening, diagnosis, and treatment. Surg Oncol Clin N Am 14, 655–669.CrossRefGoogle Scholar
  8. 8.
    Rotimi, C.N. and Jorde, L.B. (2010) Ancestry and disease in the age of genomic medicine. N Engl J Med 363, 1551–1558.PubMedCrossRefGoogle Scholar
  9. 9.
    Ingelman-Sundberg, M. (2008) Pharmacogenomic biomarkers for prediction of severe adverse drug reactions. N Engl J Med 358, 637–639.PubMedCrossRefGoogle Scholar
  10. 10.
    Phan, V.H., Moore, M.M., McLachlan, A.J., Piquette-Miller, M., Xu, H. and Clarke, S.J. (2009) Ethnic differences in drug metabolism and toxicity from chemotherapy. Expert Opin. Drug Metab. Toxicol 5, 243–257.PubMedCrossRefGoogle Scholar
  11. 11.
    Verma, M. and Srivastava, S. (2002) Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol 3, 755–763.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones, P.A. and Baylin, S.B. (2007) The epigenomics of cancer. Cell 128, 683–692.PubMedCrossRefGoogle Scholar
  13. 13.
    McGowan, P.O., Meaney, M.J. and Szyf, M. (2008) Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res 1237, 12–24.PubMedCrossRefGoogle Scholar
  14. 14.
    Mathers, J.C., Strathdee, G. and Relton, C.L. (2010) Induction of epigenetic alterations by dietary and other environmental factors Advances in Genetics 71, 3–39.PubMedCrossRefGoogle Scholar
  15. 15.
    Fang, M.Z., Chen, D., Sun, Y., Jin, Z., Christman, J.K. and Yang, C.S. (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11, 7033–7041.PubMedCrossRefGoogle Scholar
  16. 16.
    Duthie, S.J. (2010) Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 11, 1–10.Google Scholar
  17. 17.
    Williams, C.D., Satia, J.A., Adair, L.S., Stevens, J., Galanko, J., Keku, T.O. and Sandler, R.S. (2009) Dietary patterns, food groups, and rectal cancer risk in Whites and African-Americans. Cancer Epidemiol Biomarkers Prev 18, 1552–1561.PubMedCrossRefGoogle Scholar
  18. 18.
    Krukowski, R.A. and West, D.S. (2010) Consideration of the food environment in cancer risk reduction. J Am Diet Assoc 110, 842–844.PubMedCrossRefGoogle Scholar
  19. 19.
    Watters, J.L., Satia, J.A., Kupper, L.L., Swenberg, J.A., Schroeder, J.C. and Switzer, B.R. (2007) Associations of antioxidant nutrients and oxidative DNA damage in healthy African-American and White adults. Cancer Epidemiol Biomarkers Prev 16, 1428–1436.PubMedCrossRefGoogle Scholar
  20. 20.
    Lechner, M., Boshoff, C. and Beck, S. (2010) Cancer epigenome. Adv Genet 70, 247–276.PubMedCrossRefGoogle Scholar
  21. 21.
    Feinberg, A.P. (2010) Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol 28, 1049–1052.PubMedCrossRefGoogle Scholar
  22. 22.
    Ray, M. and Polite, B. N. (2010) Triple Negative Breast Cancers- A view from 10,000 feet. Cancer J 16, 17–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Amend, K., Hicks, D. and Ambrosone, C.B. (2006) Breast Cancer in African-American Women: Differences in Tumor Biology from European-American Women. Cancer Res 66, 8327–8330.PubMedCrossRefGoogle Scholar
  24. 24.
    Hayanga, A.J. and Newman, L.A. (2007) Investigating the phenotypes and genotypes of breast cancer in women with African ancestry: the need for more genetic epidemiology. Surg Clin North Am 87, 551–568.PubMedCrossRefGoogle Scholar
  25. 25.
    Agurs-Collins, T., Dunn, B.K., Browne, D., Johnson, K.A. and Lubet, R. (2010) Epidemiology of health disparities in relation to the biology of estrogen receptor-negative breast cancer. Semin Oncol 37, 384–401.PubMedCrossRefGoogle Scholar
  26. 26.
    Rakha, E. and Reis-Filho, J. (2009) Basal like Breast carcinoma. Arch Pathol Lab Med 133, 860–868.PubMedGoogle Scholar
  27. 27.
    Patel, T. A., Colon-Otero, G., Bueno Hume, C., Copland, J.A. 3 rd. and Perez, E.A. (2010) Breast cancer in Latinas: Gene Expression, Differential Response to Treatments, and Differential Toxicities in Latinas Compared with Other Population Groups. The Oncologist 15, 466–475.PubMedCrossRefGoogle Scholar
  28. 28.
    Kurian, A.W. (2010) BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr Opin Obstet Gynecol 22, 72–78.PubMedCrossRefGoogle Scholar
  29. 29.
    Kato, I., Cichon, M., Yee, C.L., Land, S., and Korczak, J.F. (2009) African American-preponderant single nucleotide polymorphisms (SNPs) and risk of breast cancer. Cancer Epidemiol 33, 24–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Sowers, M. R., Wilson, A.L., Kardia, S.R., Chu, J. and McConnell, D.S. (2006) CYP1A1 and CYP1B1 Polymorphisms and Their Association with Estradiol and Estrogen Metabolites in Women Who Are Premenopausal and Perimenopausal. The Am J of Med 119, S44–S51.CrossRefGoogle Scholar
  31. 31.
    Olopade, O. I., Fackenthal, J.D., Dunston, G., Tainsky, M.A., Collins, F. and Whitfield-Broome, C. (2003) Breast cancer genetics in African Americans. Cancer 97, 236–245.PubMedCrossRefGoogle Scholar
  32. 32.
    Rose, D.P. and Royak-Schaler, R. (2001) Tumor biology and prognosis in black breast cancer patients: a review. Cancer Detect Prev 25, 16–31.PubMedGoogle Scholar
  33. 33.
    Weston, A. and Godbold, J.H. (1997) Polymorphisms of H-ras-1 and p53 in breast cancer and lung cancer: a meta-analysis. Environ Health Perspect 105, 919–926.PubMedGoogle Scholar
  34. 34.
    Joe, A.K., Arber, N., Bose, S., Heitjan, D., Zhang, Y., Weinstein, I.B. and Hibshoosh, H. (2001) Cyclin D1 overexpression is more prevalent in non-Caucasian breast cancer. Anticancer Res 21, 3535–3539.PubMedGoogle Scholar
  35. 35.
    John, E.M., Miron, A., Gong,G., Phipps, A.I., Felberg, A., Li, F.P., West, D.W. and Whittemore, A.S. (2007) Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 298, 2869–2876.PubMedCrossRefGoogle Scholar
  36. 36.
    Jing, F., Yuping, W., Yong, C., Jie, L., Jun, L., Xuanbing, T. and Lihua, H. (2010) CpG island methylator phenotype of multigene in serum of sporadic breast carcinoma. Tumour Biol 31, 321–331.PubMedCrossRefGoogle Scholar
  37. 37.
    Guendel, I., Carpio, L., Pedati, C., Schwartz, A., Teal, C., Kashanchi, F. and Kehn-Hall, K. (2010) Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function. PLoS One 5, e11379.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee, J. S., Fackler, M.J., Lee, J.H., Choi, C., Park, M.H., Yoon, J.H., Zhang, Z. and Sukumar, S. (2010) Basal-like breast cancer displays distinct patterns of promoter methylation. Cancer Biol Ther 9, 1017–1024.PubMedCrossRefGoogle Scholar
  39. 39.
    Karray-Chouayekh, S., Trifa, F., Khabir, A., Boujelbane, N., Sellami-Boudawara, T., Daoud, J., Frikha, M., Gargouri, A. and Mokdad-Gargouri, R. (2009) Clinical Significance of Epigenetic Inactivation of hMLH1 and BRCA1 in Tunisian Patients with Invasive Breast Carcinoma. J of Biomed and Biotech 2009, 369129.Google Scholar
  40. 40.
    Dumitrescu, R.G., Marian, C., Krishnan, S.S., Spear, S.L., Kallakury, B.V., Perry, D.J., Convit, J.R., Seillier-Moiseiwitsch, F., Yang, Y., Freudenheim, J.L. and Shields, P.G. (2010) Familial and racial determinants of tumour suppressor genes promoter hypermethylation in breast tissues from healthy women. J Cell Mol Med 14, 1468–1475.PubMedCrossRefGoogle Scholar
  41. 41.
    Mehrotra, J., Ganpat, M.M., Kanaan, Y., Fackler, M.J., McVeigh, M., Lahti-Domenici, J., Polyak, K., Argani, P., Naab, T., Garrett, E., Parmigiani, G., Broome, C. and Sukumar, S. (2004) Estrogen Receptor/Progesterone Receptor-Negative Breast Cancers of Young African-American Women Have a Higher Frequency of Methylation of Multiple Genes than Those of Caucasian Women. Clin Cancer Res 10, 2052–2057.PubMedCrossRefGoogle Scholar
  42. 42.
    Fackler, M. J., McVeigh, M., Evron, E., Garrett, E., Mehrotra, J., Polyak, K., Sukumar, S. and Argani, P. (2003) DNA methylation of RASSF1A, HIN-1, RAR-b, Cyclin D2 and Twist in in situ invasive and lobular carcinoma. Int J Cancer 107, 970–975.PubMedCrossRefGoogle Scholar
  43. 43.
    Karray-Chouayekh, S., Trifa, F., Khabir, A., Boujelbane, N., Sellami-Boudawara, T., Daoud, J., Frikha, M., Jlidi, R., Gargouri, A. and Mokdad-Gargouri, R. (2010) Aberrant methylation of RASSF1A is associated with poor survival in Tunisian breast cancer patients. J Cancer Res Clin Oncol 136, 203–210.PubMedCrossRefGoogle Scholar
  44. 44.
    Hsing, A.W., Tsao L., and Devesa S.S. (2000) International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 85, 60–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Odedina, F.T., Akinremi, T.O., Chinegwundoh, F., Roberts, R., Yu, D., Reams, R.R., Freedman, M.L., Rivers, B., Green, B.L., Kumar, N. (2009) Prostate cancer disparities in Black men of African descent: a comparative literature review of prostate cancer burden among Black men in the United States, Caribbean, United Kingdom, and West Africa. Infect Agent Cancer 4, Suppl 1:S2Google Scholar
  46. 46.
    Robbins, C., Torres, J.B., Hooker, S., Bonilla, C., Hernandez, W., Candreva, A., Ahaghotu, C., Kittles, R. and Carpten, J. (2007) Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res 17, 1717–1722.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu, J., Kibel, A.S., Hu, J.J., Turner, A.R., Pruett, K., Zheng, S.L., Sun, J., Isaacs, S.D., Wiley, K.E., Kim, S.T., Hsu, F.C., Wu, W., Torti, F.M., Walsh, P.C., Chang, B.L. and Isaacs, W.B. (2007) Prostate cancer risk associated loci in African Americans. Cancer Epidemiol Biomarkers Prev 18, 2145–2149.CrossRefGoogle Scholar
  48. 48.
    Rokman, A., Ikonen, T., Seppälä, E.H., Nupponen, N., Autio, V., Mononen, N., Bailey-Wilson, J., Trent, J., Carpten, J., Matikainen, M.P., Koivisto, P.A., Tammela, T.L., Kallioniemi, O.P. and Schleutker, J. (2004) Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 70, 1299–1304.CrossRefGoogle Scholar
  49. 49.
    Kittles, R., Young, D., Weinrich, S., Hudson, J., Argyropoulos, G., Ukoli, F., Adams-Campbell, L. and Dunston, G.M. (2001) Extent of linkage disequilibrium between the androgen receptor gene CAG and GGC repeats in human populations: implications for prostate cancer risk. Hum Genet 109, 253–261.PubMedCrossRefGoogle Scholar
  50. 50.
    Rose, R.K., Bernstein, L., Lobo, R.A., Shimizu, H., Stanczyk, F.Z., Pike, M.C. and Henderson, B.E. (1992) 5-alpha-reducing activity and risk of prostate cancer among Japanese and US white and black males. Lancet 339, 887–889.CrossRefGoogle Scholar
  51. 51.
    Kwabi-Addo, B., Wang, S., Chung, W., Jelinek, J., Patierno, S.R., Wang, B.D., Andrawis, R., Lee, N.H., Apprey, V., Issa, J.P. and Ittmann, M. (2010) Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin Cancer Res 16, 3539–3547.PubMedCrossRefGoogle Scholar
  52. 52.
    Enokida, H., Shiina, H., Urakami, S., Igawa, M., Ogishima, T., Pookot, D., Li, L.C., Tabatabai, Z.L., Kawahara, M., Nakagawa, M., Kane, C.J., Carroll, P.R. and Dahiya, R. (2005) Ethnic group-related differences in CpG hypermethylation of the GSTP1 gene promoter among African-American, Caucasian and Asian patients with prostate cancer. Int J Cancer 116, 174–181.PubMedCrossRefGoogle Scholar
  53. 53.
    Li, L.C. and Dahiya, R. (2007) Epigenetics of prostate cancer. Frontiers in Bioscience 12, 3377–3397.PubMedCrossRefGoogle Scholar
  54. 54.
    Woodson, K., Hayes, R., Wideroff, L., Villaruz, L. and Tangrea, J. (2003) Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate 55, 199–205.PubMedCrossRefGoogle Scholar
  55. 55.
    Enokida, H., Shiina, H., Urakami, S., Terashima, M., Ogishima, T., Li, L.C., Kawahara, M., Nakagawa, M., Kane, C.J., Carroll, P.R., Igawa, M. and Dahiya, R. (2006) Smoking influences aberrant CpG hypermethylation of multiple genes in human prostate carcinoma. Cancer 106, 79–86.PubMedCrossRefGoogle Scholar
  56. 56.
    SEER Cancer Statistics Review 1975-2007 http://seer.cancer.gov/csr/1975_2007/index.html
  57. 57.
    Sharma, S.O. and Keefe, S. J. (2007) Environmental influences on the high mortality from colorectal cancer in African Americans. Postgrad Med J 83, 583–589.PubMedCrossRefGoogle Scholar
  58. 58.
    Chien, C., Morimoto, L.M., Tom, J. and Li, C.I. (2005) Differences in colorectal carcinoma stage and survival by race and ethnicity. Cancer 104, 629–639.PubMedCrossRefGoogle Scholar
  59. 59.
    Goodman, J.E., Bowman, E.D., Chanock, S.J., Alberg, A.J. and Harris, C.C. (2004) Arachidonate lipoxygenase (ALOX) and cyclooxygenase (COX) polymorphisms and colon cancer risk. Carcinogenesis 25: 2467–2472.PubMedCrossRefGoogle Scholar
  60. 60.
    Brim, H., Mokarram, P., Naghibalhossaini, F., Saberi-Firoozi, M., Al-Mandhari, M., et al. (2008) Impact of BRAF, MLH1 on the incidence of microsatellite instability high colorectal cancer in populations based study. Mol Cancer 7, 68.PubMedCrossRefGoogle Scholar
  61. 61.
    Kumar, K., Brim, H., Giardiello, F., Smoot, D.T., Nouraie, M., Lee, E.L. and Ashktorab, H. (2009) Distinct BRAF (V600E) and KRAS mutations in high microsatellite instability sporadic colorectal cancer in African Americans. Clin Cancer Res 15, 1155–1161.PubMedCrossRefGoogle Scholar
  62. 62.
    Ashktorab, H., Begum, R., Akhgar, A., Smoot, D.T., Elbedawi, M., Daremipouran, M., Zhao, A., Momen, B. and Giardiello, F.M. (2007) Folate status and risk of colorectal polyps in African Americans. Dig Dis Sci 52, 1462–1470.PubMedCrossRefGoogle Scholar
  63. 63.
    Sweeney, C., Curtin, K., Murtaugh, M.A., Caan, B.J., Potter, J.D. and Slattery, M.L. (2006) Haplotype analysis of common vitamin D receptor variants and colon and rectal cancers. Cancer Epidemiol Biomarkers Prev 15, 744–749.PubMedCrossRefGoogle Scholar
  64. 64.
    Ashktorab, H., Schäffer, A.A., Daremipouran, M., Smoot, D.T., Lee, E. and Brim, H. (2010) Distinct genetic alterations in colorectal cancer. PLoS One 5, e8879.PubMedCrossRefGoogle Scholar
  65. 65.
    Jang, Y.H., Lim, S.B., Kim, M.J., Chung, H.J., Yoo, H.W., Byeon, J.S., Myung, S.J., Lee, W., Chun, S. and Min, W.K. (2010) Three novel mutations of the APC gene in Korean patients with familial adenomatous polyposis. Cancer Genet Cytogenet 200, 34–39.PubMedCrossRefGoogle Scholar
  66. 66.
    Sheng, J.Q., Cui, W.J., Fu, L., Jin, P., Han, Y., Li, S.J., Fan, R.Y., Li, A.Q., Zhang, M.Z. and Li, S.R. (2010) APC gene mutations in Chinese familial adenomatous polyposis patients. World J Gastroenterol 16, 1522–1526.PubMedCrossRefGoogle Scholar
  67. 67.
    Mokarram, P., Kumar, K., Brim, H., Naghibalhossaini, F., Saberi-firoozi, M., Nouraie, M., Green, R., Lee, E., Smoot, D.T. and Ashktorab, H. (2009)Distinct high-profile methylated genes in colorectal cancer. PLoS One 4, e7012.PubMedCrossRefGoogle Scholar
  68. 68.
    Ashktorab, H., Belgrave, K., Hosseinkhah, F., Brim, H., Nouraie, M., Takkikto, M., Hewitt, S., Lee, E.L., Dashwood, R.H. and Smoot, D. (2009) Global Histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma. Dig Dis Sci 54, 2109–2117.PubMedCrossRefGoogle Scholar
  69. 69.
    Williams, C.D. (2010) Antioxidant and DNA methylation-related nutrients and risk of distal colorectal cancer. Cancer Causes Control 21, 1171–1181.PubMedCrossRefGoogle Scholar
  70. 70.
    Ma, G.X., Shive, S.E., Fang, C.Y., Feng, Z., Parameswaran, L., Pham, A. and Khanh, C. (2007) Knowledge, attitudes, and behaviors of hepatitis B screening and vaccination and liver cancer risks among Vietnamese Americans. J Health Care Poor Underserved18, 62–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Kwong, S.L., Stewart, S.L., Aoki, C.A. and Chen, M.S. Jr. (2010) Disparities in Hepatocellular Carcinoma Survival among Californians of Asian Ancestry, 1988 to 2007. Cancer Epidemiol Biomarkers Prev 19, 2747–2757.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang, H., Zhai, Y., Hu, Z., Wu, C., Qian, J., Jia, W., Ma, F., Huang, W., Yu, L., Yue, W., Wang, Z., Li, P., Zhang, Y., Liang, R., Wei, Z., Cui, Y., Xie, W., Cai, M., Yu, X., Yuan, Y., Xia, X., Zhang, X., Yang, H., Qiu, W., Yang, J., Gong, F., Chen, M., Shen, H., Lin, D., Zeng, Y.X., He, F. and Zhou, G. (2010) Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat Genet 42, 755–758.PubMedCrossRefGoogle Scholar
  73. 73.
    Li, Y., Xie, Q., Lu, F., Zhao, J., Mao, P., Li, Z., Liu, S. and Zhuang, H. (2010) Association between epidermal growth factor 61A/G polymorphism and hepatocellular carcinoma susceptibility in Chinese patients. Liver Int 30, 112–118.PubMedCrossRefGoogle Scholar
  74. 74.
    Podar, K., and Anderson, K.C. (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 105, 1383–1395.PubMedCrossRefGoogle Scholar
  75. 75.
    Wu, L.M., Xie, H.Y., Zhou, L., Yang, Z., Zhang, F. and Zheng, S.S. (2009) A single nucleotide polymorphism in the vascular endothelial growth factor gene is associated with recurrence of hepatocellular carcinoma after transplantation. Arch Med Res 40, 565–570.PubMedCrossRefGoogle Scholar
  76. 76.
    Ping, J., Wang, H., Huang, M. and Liu, Z.S. (2006) Genetic analysis of glutathione S-transferase A1 polymorphism in the Chinese population and the influence of genotype on enzymatic properties. Toxicol Sci 89, 438–443.PubMedCrossRefGoogle Scholar
  77. 77.
    Fang, W., Piao, Z., Buyse, I.M., Simon, D., Sheu, J.C., Perucho, M. and Huang, S. (2001) Preferential loss of a polymorphic RIZ allele in human hepatocellular carcinoma. Br J Cancer 84, 743–747.PubMedCrossRefGoogle Scholar
  78. 78.
    Tong, M. J., Chavalitdhamrong, D., Lu, D.S., Raman, S.S., Gomes, A., Duffy, J.P., Hong, J.C. and Busuttil, R.W. (2010) Survival in Asian Americans after treatments for hepatocellular carcinoma: a seven-year experience at UCLA. J Clin Gastroenterol 44, e63.PubMedCrossRefGoogle Scholar
  79. 79.
    Feng, Q., Stern, J.E., Hawes, S.E., Lu, H., Jiang, M. and Kiviat, N.B. (2010) DNA methylation changes in normal liver tissues and hepatocellular carcinoma with different viral infection. Exp Mol Pathol 88, 287–292.PubMedCrossRefGoogle Scholar
  80. 80.
    Sugawara, W., Haruta, M., Sasaki, F., Watanabe, N., Tsunematsu, Y., Kikuta, A. and Kaneko, Y. (2007) Promoter hypermethylation of the RASSF1A gene predicts the poor outcome of patients with hepatoblastoma. Pediatr Blood Cancer 49, 240249.PubMedCrossRefGoogle Scholar
  81. 81.
    Ezzikouri, S., El Feydi, A.E., Benazzouz, M., Afifi, R., El Kihal, L., Hassar, M., Akil, A., Pineau, P. and Benjelloun, S. (2009) Single nucleotide polymorphism in DNMT3B promoter and its association with hepatocellular carcinoma in a Moroccan population. Infect Genet Evol 9, 877–881.PubMedCrossRefGoogle Scholar
  82. 82.
    Herath, N.I., Purdie, D.M., Kew, M.C., Smith, J.L., Young, J., Leggett, B.A. and MacDonald, G.A. (2009) Varying etiologies lead to different molecular changes in Australian and South African hepatocellular carcinomas. Int J Oncol 35, 1081–1089.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sulma I. Mohammed
    • 1
  • Sanya Springfield
    • 2
  • Rina Das
    • 2
  1. 1.Department of Comparative PathobiologyPurdue UniversityWest LafayetteUSA
  2. 2.Center to Reduce Cancer Health DisparitiesNational Cancer InstituteRockvilleUSA

Personalised recommendations