Comprehensive DNA Methylation Profiling of Human Repetitive DNA Elements Using an MeDIP-on-RepArray Assay

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 859)

Abstract

Hypomethylation of repetitive DNA elements is a common epigenetics event in cancer. Although it is believed that this hypomethylation impacts chromosomal and transcriptional stability of the genome, the extent of repetitive sequences contribution to the development and progression of human cancers remains to be clarified. Repetitive sequences have largely been ignored by genome-wide studies, and thus little is known about the DNA methylation profiles of different repetitive DNA elements types. As a step toward investigating epigenetic landscape of repetitive DNA, we have developed a repeat-specific DNA microarray called RepArray. The RepArray comprises 236 prototypic oligonucleotides that span the main repetitive elements families found in the human genome. Combined to a methylated DNA immunoprecipitation (MeDIP) approach, RepArray allows depicting simultaneously the global trends that affect multiple repeat classes through the analysis of a restricted number of targets. Here, we present the MeDIP-on-RepArray protocol as it was established in our laboratory to delineate DNA methylation changes after chemical or genetic disruption of DNA methyltransferase activity in cells. It might serve as a workflow guideline for screening DNA methylation changes on repetitive elements during development and aging, among tissues and in various types of stress or pathological situations.

Key words

DNA methylation 5-Methylcytosine (5mC) antibody DNA repetitive sequences DNA repeats Transposable elements DNA satellite Oligonucleotide microarray MeDIP-on-chip Epigenetics 

References

  1. 1.
    Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775 (1):138–162. doi:S0304-419X(06)00056-4PubMedGoogle Scholar
  2. 2.
    Hedges DJ, Deininger PL (2007) Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616 (1–2):46–59. doi:S0027-5107(06)00333-2PubMedGoogle Scholar
  3. 3.
    Eymery A, et al. (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37 (19):6340–6354. doi:gkp639PubMedCrossRefGoogle Scholar
  4. 4.
    Rodriguez J, et al. (2008) Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 36 (3):770–784. doi:gkm1105PubMedCrossRefGoogle Scholar
  5. 5.
    Yang AS, et al. (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32 (3):e38. doi:10.1093/nar/gnh032/3/e38 PubMedCrossRefGoogle Scholar
  6. 6.
    Weisenberger DJ, et al. (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33 (21):6823–6836. doi:33/21/6823PubMedCrossRefGoogle Scholar
  7. 7.
    Roman-Gomez J, et al. (2008) Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia. Leuk Res 32 (3):487–490. doi:S0145-2126(07)00307-4PubMedCrossRefGoogle Scholar
  8. 8.
    Choi SH, et al. (2009) Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int J Cancer 125 (3):723–729. doi:10.1002/ijc.24384 PubMedCrossRefGoogle Scholar
  9. 9.
    Horard B, et al. (2009) Global analysis of DNA methylation and transcription of human repetitive sequences. Epigenetics 4 (5):339–350. doi:9284PubMedCrossRefGoogle Scholar
  10. 10.
    Weber M, Schubeler D (2007) Genomic ­patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19 (3):273–280. doi:S0955-0674(07)00063-4PubMedCrossRefGoogle Scholar
  11. 11.
    Weber M, et al. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37 (8):853–862. doi:ng1598PubMedCrossRefGoogle Scholar
  12. 12.
    Mohn F, et al. (2009) Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 507:55–64. doi:10.1007/978-1-59745-522-0_5 PubMedCrossRefGoogle Scholar
  13. 13.
    Sorensen AL, Collas P (2009) Immunoprecipitation of methylated DNA. Methods Mol Biol 567:249–262. doi:10.1007/978-1-60327-414-2_16 PubMedCrossRefGoogle Scholar
  14. 14.
    Rouillard JM, Zuker M, Gulari E (2003) OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 31 (12):3057–3062PubMedCrossRefGoogle Scholar
  15. 15.
    Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22 (8):1868–1877. doi:10.1093/emboj/cdg188 PubMedCrossRefGoogle Scholar
  16. 16.
    Vissel B, Choo KH (1987) Human alpha satellite DNA – consensus sequence and conserved regions. Nucleic Acids Res 15 (16):6751–6752PubMedCrossRefGoogle Scholar
  17. 17.
    Moyzis RK, et al. (1987) Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis. Chromosoma 95 (6):375–386PubMedCrossRefGoogle Scholar
  18. 18.
    Cooke HJ, Hindley J (1979) Cloning of human satellite III DNA: different components are on different chromosomes. Nucleic Acids Res 6 (10):3177–3197PubMedCrossRefGoogle Scholar
  19. 19.
    Moyzis RK, et al. (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, ­present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85 (18):6622–6626PubMedCrossRefGoogle Scholar
  20. 20.
    Espada J, et al. (2004) Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 279 (35):37175–37184. doi:10.1074/jbc.M404842200 PubMedCrossRefGoogle Scholar
  21. 21.
    Kondo Y, et al. (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA 101 (19):7398–7403. doi:10.1073/pnas.0306641101 (pii)PubMedCrossRefGoogle Scholar
  22. 22.
    Jacinto, F.V., et al. (2007) Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Res 67(24): p. 11481–6PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratory of Biology and Pathology of Genomes, CNRS UMR 6267, Institut National de la Santé et de la Recherche Médicale U998University of Nice Sophia-AntipolisNiceFrance
  2. 2.Department of Medical GeneticsCentre Hospitalier Universitaire of NiceNiceFrance
  3. 3.Centre de Génétique et de Physiologie Moléculaire et Cellulaire-UMR CNRS 5534Université LYON 1VilleurbanneFrance

Personalised recommendations