Advertisement

Lipases as Biocatalyst for Biodiesel Production

  • Xiaohu Fan
  • Xochitl Niehus
  • Georgina Sandoval
Part of the Methods in Molecular Biology book series (MIMB, volume 861)

Abstract

The global shortages of fossil fuels, significant increase in the price of crude oil, and increased environmental concerns have stimulated the rapid growth in biodiesel production. Biodiesel is generally produced through transesterification reaction catalyzed either chemically or enzymatically. Enzymatic transesterification draws high attention because that process shows certain advantages over the chemical catalysis of transesterification and it is “greener.” This paper reviews the current status of biodiesel production with lipase-biocatalysis approach, including sources of lipases, kinetics, and reaction mechanism of biodiesel production using lipases, and lipase immobilization techniques. Factors affecting biodiesel production and economic feasibility of biodiesel production using lipases are also covered.

Key words

Biodiesel Oils Transesterification Esterification Biocatalysis Lipase 

References

  1. 1.
    Fan X, Burton R (2009) Recent development of biodiesel feedstocks and the applications of glycerol: a review. Open Fuel Energ Sci J 2:100–109CrossRefGoogle Scholar
  2. 2.
    Meng X et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRefGoogle Scholar
  3. 3.
    Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095CrossRefGoogle Scholar
  4. 4.
    Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification: a review. Renew Sustain Energy Rev 10:248–268CrossRefGoogle Scholar
  5. 5.
    Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. J Am Oil Chem Soc 74:1457–1463CrossRefGoogle Scholar
  6. 6.
    Fan X, Burton R, Austic G (2009) Preparation and characterization of biodiesel produced from recycled canola oil. Open Fuels Energy Sci J 2:113–118CrossRefGoogle Scholar
  7. 7.
    Dossat V, Combes D, Marty A (2002) Lipase-catalysed transesterification of high oleic sunflower oil. Enzym Microb Technol 30:90–94CrossRefGoogle Scholar
  8. 8.
    Dantas M, Conceição M, Fernandes V Jr et al (2007) Thermal and kinetic study of corn biodiesel obtained by the methanol and ethanol routes. J Thermal Anal Calorim 87:835–839CrossRefGoogle Scholar
  9. 9.
    Shu Q, Zhang Q, Xu G et al (2009) Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst. Fuel Process Technol 90:1002–1008CrossRefGoogle Scholar
  10. 10.
    Chattopadhyay S, Karemore A, Das S et al (2011) Biocatalytic production of biodiesel from cottonseed oil: standardization of process parameters and comparison of fuel characteristics. Appl Energy 88:1251–1256CrossRefGoogle Scholar
  11. 11.
    Komers K, Skopal F, Stloukal R et al (2002) Kinetics and mechanism of the KOH-catalyzed methanolysis of rapeseed oil for biodiesel production. Eur J of Lipid Sci Technol 104:728–737CrossRefGoogle Scholar
  12. 12.
    Kalam MA, Masjuki HH (2002) Biodiesel from palmoil-an analysis of its properties and potential. Biomass Bioenerg 23:471–479CrossRefGoogle Scholar
  13. 13.
    Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33:1646–1653CrossRefGoogle Scholar
  14. 14.
    Diaz-Felix W, Riley MR, Zimmt W et al (2009) Pretreatment of yellow grease for efficient production of fatty acid methyl esters. Biomass Bioenerg 33:558–563CrossRefGoogle Scholar
  15. 15.
    Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436Google Scholar
  16. 16.
    Ngo HL, Zafiropoulos NA, Foglia TA et al (2007) Efficient two-step synthesis of biodiesel from greases. Energy Fuel 22:626–634CrossRefGoogle Scholar
  17. 17.
    Juan JC, Kartika DA, Wu TY et al (2011) Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol 102:452–460PubMedCrossRefGoogle Scholar
  18. 18.
    Koh MY, Mohd. Ghazi TI (2011) A review of biodiesel production from Jatropha curcas L. oil. Renew Sustain Energy Rev 15:2240–2251CrossRefGoogle Scholar
  19. 19.
    Lu H, Liu Y, Zhou H et al (2009) Production of biodiesel from Jatropha curcas L. oil. Comput Chem Eng 33:1091–1096CrossRefGoogle Scholar
  20. 20.
    Sharma YC, Singh B (2008) Development of biodiesel from karanja, a tree found in rural India. Fuel 87:1740–1742CrossRefGoogle Scholar
  21. 21.
    Ghadge SV, Raheman H (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenerg 28:601–605CrossRefGoogle Scholar
  22. 22.
    Demirbas A (2009) Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenerg 33:113–118CrossRefGoogle Scholar
  23. 23.
    Ramadhas AS, Jayaraj S, Muraleedharan C (2005) Biodiesel production from high FFA rubber seed oil. Fuel 84:335–340CrossRefGoogle Scholar
  24. 24.
    de Lima da Silva N, Batistella CSB, Maciel Filho R et al (2009) Biodiesel production from castor oil: optimization of alkaline ethanolysis. Energy Fuel 23:5636–5642CrossRefGoogle Scholar
  25. 25.
    Lin L, Ying D, Chaitep S et al (2009) Biodiesel production from crude rice bran oil and properties as fuel. Appl Energy 86:681–688CrossRefGoogle Scholar
  26. 26.
    Granger LM, Perlot P, Goma G et al (1993) Efficiency of fatty acid synthesis by oleaginous yeasts: prediction of yield and fatty acid cell content from consumed C/N ratio by a simple method. Biotechnol Bioeng 42:1151–1156PubMedCrossRefGoogle Scholar
  27. 27.
    Ratledge C (1991) Microorganisms for lipids. Acta Biotechnologica 11:429–438CrossRefGoogle Scholar
  28. 28.
    Liu Y, Samukawa T, Matsumoto T et al (2011) Biodiesel synthesis catalyzed by Burkholderia cenocepacia lipase supported on macroporous resin NKA in solvent-free and isooctane systems. Energy Fuel 25:1206–1212CrossRefGoogle Scholar
  29. 29.
    Yücel Y (2011) Biodiesel production from pomace oil by using lipase immobilized onto olive pomace. Bioresour Technol 102:3977–3980PubMedCrossRefGoogle Scholar
  30. 30.
    Wang YD et al (2010) Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. J Mol Catal B: Enzym 67:45–51CrossRefGoogle Scholar
  31. 31.
    Kaieda M et al (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15PubMedGoogle Scholar
  32. 32.
    Shah S, Gupta MN (2007) Lipase catalyzed preparation of biodiesel from jatropha oil in a solvent free system. Process Biochem 42:409–414CrossRefGoogle Scholar
  33. 33.
    Ognjanovic N, Bezbradica D, Knezevic-Jugovic Z (2009) Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: process optimization and the immobilized system stability. Bioresour Technol 100:5146–5154PubMedCrossRefGoogle Scholar
  34. 34.
    Park EY, Sato M, Kojima S (2008) Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant. Bioresour Technol 99:3130–3135PubMedCrossRefGoogle Scholar
  35. 35.
    Tan T, Nie K, Wang F (2006) Production of biodiesel by immobilized Candida sp. lipase at high water content. Appl Biochem Biotechnol 128:109–116PubMedCrossRefGoogle Scholar
  36. 36.
    Rodrigues RC, Ayub MAZ (2011) Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem 46:682–688CrossRefGoogle Scholar
  37. 37.
    Lee DH et al (2006) Biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Biotechnol Bioprocess Eng 11:522–525CrossRefGoogle Scholar
  38. 38.
    Kaieda M et al (1999) Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J Biosci Bioeng 88:627–631PubMedCrossRefGoogle Scholar
  39. 39.
    Miller C, Austin H, Posorske L et al (1988) Characteristics of an immobilized lipase for the commercial synthesis of esters. J Am Oil Chem Soc 65:927–931CrossRefGoogle Scholar
  40. 40.
    Posorske L, LeFebvre G, Miller C et al (1988) Process considerations of continuous fat modification with an immobilized lipase. J Am Oil Chem Soc 65:922–926CrossRefGoogle Scholar
  41. 41.
    Paiva AL, Balcão VM, Malcata FX (2000) Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzym MicrobTechnol 27:187–204CrossRefGoogle Scholar
  42. 42.
    Janssen AEM, Vaidya AM, Halling PJ (1996) Substrate specificity and kinetics of Candida rugosa lipase in organic media. Enzym Microb Technol 18:340–346CrossRefGoogle Scholar
  43. 43.
    Marty A, Chulalaksananukul W, Willemot RM et al (1992) Kinetics of lipase-catalyzed esterification in supercritical CO2. Biotechnol Bioeng 39:273–280PubMedCrossRefGoogle Scholar
  44. 44.
    Rizzi M, Stylos P, Riek A et al (1992) A kinetic study of immobilized lipase catalysing the synthesis of isoamyl acetate by transesterification in n-hexane. Enzym Microb Technol 14:709–714CrossRefGoogle Scholar
  45. 45.
    Van Tol JBA, Kraayveld DE, Jongejan JA et al (1995) Thermodynamic and kinetic parameters of lipase-catalyzed ester hydrolysis in biphasic systems with varying organic solvents. Biotechnol Bioeng 48:179–189PubMedCrossRefGoogle Scholar
  46. 46.
    Van Tol JBA et al (1995) The catalytic performance of pig pancreas lipase in enantioselective transesterification in organic solvents. Biocatal Biotransform 12:119–136CrossRefGoogle Scholar
  47. 47.
    Van Tol JBA, Stevens RMM, Veldhuizen WJ et al (1995) Do organic solvents affect the catalytic properties of lipase? Intrinsic kinetic parameters of lipases in ester hydrolysis and formation in various organic solvents. Biotechnol Bioeng 47:71–81PubMedCrossRefGoogle Scholar
  48. 48.
    Al-Zuhair S, Ling FW, Jun LS (2007) Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem 42:951–960CrossRefGoogle Scholar
  49. 49.
    Calabrò V et al (2010) Kinetics of enzymatic trans-esterification of glycerides for biodiesel production. Bioprocess Biosyst Eng 33:701–710PubMedCrossRefGoogle Scholar
  50. 50.
    Halim SFA, Harun Kamaruddin A (2008) Catalytic studies of lipase on FAME production from waste cooking palm oil in a tert-butanol system. Process Biochem 43:1436–1439CrossRefGoogle Scholar
  51. 51.
    Al-Zuhair S, Dowaidar A, Kamal H (2009) Dynamic modeling of biodiesel production from simulated waste cooking oil using immobilized lipase. Biochem Eng J 44:256–262CrossRefGoogle Scholar
  52. 52.
    Villeneuve P, Muderhwa JM, Graille J et al (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B: Enzym 9:113–148CrossRefGoogle Scholar
  53. 53.
    Jegannathan KR, Abang S, Poncelet D et al (2008) Production of biodiesel using immobilized lipase-a critical review. Crit Rev Biotechnol 28:253–264PubMedCrossRefGoogle Scholar
  54. 54.
    Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315PubMedCrossRefGoogle Scholar
  55. 55.
    Palomo JM, Fernandez-Lorente G, Mateo C et al (2002) Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzym Microb Technol 31:775–783CrossRefGoogle Scholar
  56. 56.
    Barbosa O, Ariza C, Ortiz C et al (2010) Kinetic resolution of (R/S)-propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). New Biotechnol 27:844–850CrossRefGoogle Scholar
  57. 57.
    Reetz MT, Tielmann P, Wiesenhofer W et al (2003) Second generation sol–gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345:717–728CrossRefGoogle Scholar
  58. 58.
    Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463CrossRefGoogle Scholar
  59. 59.
    Malcata FX, Reyes H, Garcia H et al (1990) Immobilized lipase reactors for modification of fats and oils: a review. J Am Oil Chem Soc 67:890–910CrossRefGoogle Scholar
  60. 60.
    Yahya ARM, Anderson WA, Moo-Young M (1998) Ester synthesis in lipase-catalyzed reactions. Enzym Microb Technol 23:438–450CrossRefGoogle Scholar
  61. 61.
    Salis A, Pinna M, Monduzzi M et al (2005) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119:291–299PubMedCrossRefGoogle Scholar
  62. 62.
    Tan T, Lu J, Nie K et al (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634PubMedCrossRefGoogle Scholar
  63. 63.
    Sandoval G, Condoret JS, Marty A (2001) Thermodynamic activity based enzyme kinetics: an efficient tool for nonaqueous enzymology. AIChE J 47:718–726CrossRefGoogle Scholar
  64. 64.
    Rivera I, Villanueva G, Sandoval G (2009) Producción de biodiesel a partir de residuos grasos animales por vía enzimática. Grasas y Aceites 60:470–476CrossRefGoogle Scholar
  65. 65.
    Lu J, Nie K, Xie F et al (2007) Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99–125. Process Biochem 42:1367–1370CrossRefGoogle Scholar
  66. 66.
    Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of jatropha oil. Energy Fuel 18:154–159CrossRefGoogle Scholar
  67. 67.
    Yadav GD, Trivedi AH (2003) Kinetic modeling of immobilized-lipase catalyzed transesterification of n-octanol with vinyl acetate in non-aqueous media. Enzym Microb Technol 32:783–789CrossRefGoogle Scholar
  68. 68.
    Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416PubMedGoogle Scholar
  69. 69.
    Guieysse D, Sandoval G, Faure L et al (2004) New efficient lipase from Yarrowia lipolytica for the resolution of 2-bromo-arylacetic acid esters. Tetrahedron Asymm 15:3539–3543CrossRefGoogle Scholar
  70. 70.
    Verdugo C, Luna D, Posadillo A et al (2011) Production of a new second generation biodiesel with a low cost lipase derived from Thermomyces lanuginosus: Optimization by response surface methodology. Catal Today 167:107–112Google Scholar
  71. 71.
    Zhang KP, Lai J-Q, Huang Z-L et al (2011) Penicillium expansum lipase-catalyzed production of biodiesel in ionic liquids. Bioresour Technol 102:2767–2772PubMedCrossRefGoogle Scholar
  72. 72.
    Li Q, Yan Y (2010) Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase. Appl Energy 87:3148–3154CrossRefGoogle Scholar
  73. 73.
    Wang X, Liu X, Zhao C et al (2011) Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Bioresour Technol 102(10):6352–5PubMedCrossRefGoogle Scholar
  74. 74.
    Dizge N, Aydiner C, Imer DY et al (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100:1983–1991PubMedCrossRefGoogle Scholar
  75. 75.
    Lee JH, Kim SB, Kang SW et al (2011) Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresour Technol 102:2105–2108PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Piedmont Biofuels IndustrialPittsboroUSA
  2. 2.Industrial Biotechnology UnitCentro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ)GuadalajaraMexico

Personalised recommendations