Methods to Quantify Basal and Stress-Induced Cortisol Response in Larval Zebrafish

  • Peter J. Steenbergen
  • Juriaan R. Metz
  • Gert Flik
  • Michael K. Richardson
  • Danielle L. Champagne
Protocol
Part of the Neuromethods book series (NM, volume 66)

Abstract

The zebrafish model is being increasingly used in stress and anxiety research. The homologue of the hypothalamic-pituitary-adrenal (HPA) axis has been found in fish and is referred to as the hypothalamic-pituitary-­interrenal (HPI) axis. HPA (mammalian) and HPI (fish) axes are homologous in term of the general functional organization and physiology of the stress response via similarities in anatomy, connectivity, and molecular constituents. Because of these qualities, a range of complementing assays are being developed to assess the behavioral and endocrine correlates of the stress response in both larval and adult zebrafish. The protocol presented here describes a simple methodology for measurement of whole-body cortisol levels in larval zebrafish using a cortisol radioimmunoassay (RIA) optimized for very small volume. Our protocol represents the first cortisol RIA method for larval zebrafish, thus complementing the previously characterized cortisol RIA for adult zebrafish while offering an alternative to the ELISA method. We also provide a methodology for the use of an acute stress paradigm customized for zebrafish larvae, i.e., acute mild electric shock. The mild electric shock stress paradigm developed here is similar to the foot-shock stress paradigm widely used in rodents, which has not been yet characterized in zebrafish. We show how this stress paradigm can be easily used in combination with the cortisol RIA method to rapidly reveal functionality of the HPI axis during ontogeny in larval zebrafish, especially with regard to the stress hyporesponsive period.

Key words

Cortisol Development Hypothalamic-pituitary-interrenal axis Hypothalamic-pituitary-adrenal axis Neuroendocrinology Radioimmunoassay Stress Stress hyporesponsive period 

Notes

Acknowledgment

The authors gratefully acknowledge the support of the Smart Mix Programme of The Netherlands Ministry of Economic Affairs and The Netherlands Ministry of Education, Culture and Science. We also warmly thank Mr. C. Pen from the Fijn Mechanische Dienst at the Leiden Institute of Physics for his professional assistance with the design and building of the electric shock box.

References

  1. 1.
    Brittijn SA, Duivesteijn SJ, Belmamoune M, Bertens LF, Bitter W, de Bruijn JD, Champagne DL, Cuppen E, Flik G, Vandenbroucke-Grauls CM, Janssen RA, de Jong IM, de Kloet ER, Kros A, Meijer AH, Metz JR, van der Sar AM, Schaaf MJ, Schulte-Merker S, Spaink HP, Tak PP, Verbeek FJ, Vervoordeldonk MJ, Vonk FJ, Witte F, Yuan H, Richardson MK (2009) Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol 53:835–850PubMedCrossRefGoogle Scholar
  2. 2.
    Burne T, Scott E, van Swinderen B, Hilliard M, Reinhard J, Claudianos C, Eyles D, McGrath J (2011) Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish? Mol Psychiatry 16(1):7–16PubMedCrossRefGoogle Scholar
  3. 3.
    Guo S (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3:63–74PubMedCrossRefGoogle Scholar
  4. 4.
    Guo S (2009) Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin Drug Discov 4:715–726PubMedCrossRefGoogle Scholar
  5. 5.
    Kabashi E, Champagne N, Brustein E, Drapeau P (2010) In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet 26:373–381PubMedCrossRefGoogle Scholar
  6. 6.
    Kari G, Rodeck U, Dicker AP (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82:70–80PubMedCrossRefGoogle Scholar
  7. 7.
    Steenbergen PJ, Richardson MK, Champagne DL (2011) The use of the zebrafish model in stress research. Prog Neuropsychopharmacol Biol Psychiatry 35(6):1432–1451PubMedCrossRefGoogle Scholar
  8. 8.
    Veldman MB, Lin S (2008) Zebrafish as a developmental model organism for pediatric research. Pediatr Res 64:470–476PubMedCrossRefGoogle Scholar
  9. 9.
    Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367PubMedCrossRefGoogle Scholar
  10. 10.
    Morris JA (2009) Zebrafish: a model system to examine the neurodevelopmental basis of schizophrenia. Prog Brain Res 179:97–106PubMedCrossRefGoogle Scholar
  11. 11.
    Pogoda HM, Hammerschmidt M (2009) How to make a teleost adenohypophysis: molecular pathways of pituitary development in zebrafish. Mol Cell Endocrinol 312:2–13PubMedCrossRefGoogle Scholar
  12. 12.
    Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902PubMedCrossRefGoogle Scholar
  13. 13.
    Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y, Salas C (2002) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57:499–503PubMedCrossRefGoogle Scholar
  14. 14.
    Schaaf MJ, Champagne D, van Laanen IH, van Wijk DC, Meijer AH, Meijer OC, Spaink HP, Richardson MK (2008) Discovery of a functional glucocorticoid receptor beta-isoform in zebrafish. Endocrinology 149:1591–1599PubMedCrossRefGoogle Scholar
  15. 15.
    Sison M, Cawker J, Buske C, Gerlai R (2006) Fishing for genes influencing vertebrate behavior: zebrafish making headway. Lab Anim (NY) 35:33–39CrossRefGoogle Scholar
  16. 16.
    Tropepe V, Sive HL (2003) Can zebrafish be used as a model to study the neurodevelopmental causes of autism? Genes Brain Behav 2:268–281PubMedCrossRefGoogle Scholar
  17. 17.
    Alsop D, Vijayan M (2009) The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. Gen Comp Endocrinol 161:62–66PubMedCrossRefGoogle Scholar
  18. 18.
    Alsop D, Vijayan MM (2008) Development of the corticosteroid stress axis and receptor expression in zebrafish. Am J Physiol Regul Integr Comp Physiol 294:R711–R719PubMedCrossRefGoogle Scholar
  19. 19.
    Alsop D, Vijayan MM (2009) Molecular programming of the corticosteroid stress axis during zebrafish development. Comp Biochem Physiol A Mol Integr Physiol 153:49–54PubMedCrossRefGoogle Scholar
  20. 20.
    Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625PubMedGoogle Scholar
  21. 21.
    Fuzzen ML, Van Der Kraak G, Bernier NJ (2010) Stirring up new ideas about the regulation of the hypothalamic-pituitary-interrenal axis in zebrafish (Danio rerio). Zebrafish 7:349–358PubMedCrossRefGoogle Scholar
  22. 22.
    Verbeek P, Iwamoto T, Murakami N (2008) Variable stress-responsiveness in wild type and domesticated fighting fish. Physiol Behav 93:83–88PubMedCrossRefGoogle Scholar
  23. 23.
    Ramsay JM, Watral V, Schreck CB, Kent ML (2009) Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio (Hamilton). J Fish Dis 32:931–941PubMedCrossRefGoogle Scholar
  24. 24.
    Ramsay JM, Feist GW, Varga ZM, Westerfield M, Kent ML, Schreck CB (2009) Whole-body cortisol response of zebrafish to acute net handling stress. Aquaculture. doi: 10.1016/j.aquaculture.2009.08.035
  25. 25.
    Alderman SL, Bernier NJ (2009) Ontogeny of the corticotropin-releasing factor system in zebrafish. Gen Comp Endocrinol 164:61–69PubMedCrossRefGoogle Scholar
  26. 26.
    Bencan Z, Sledge D, Levin ED (2009) Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94:75–80PubMedCrossRefGoogle Scholar
  27. 27.
    Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 208:56–62PubMedCrossRefGoogle Scholar
  28. 28.
    Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, Wu N, Wong K, Roy S, Suciu C, Goodspeed J, Elegante M, Bartels B, Elkhayat S, Tien D, Tan J, Denmark A, Gilder T, Kyzar E, Dileo J, Frank K, Chang K, Utterback E, Hart P, Kalueff AV (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5:1786–1799PubMedCrossRefGoogle Scholar
  29. 29.
    Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK (2010) Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res 214:332–342PubMedCrossRefGoogle Scholar
  30. 30.
    Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44PubMedCrossRefGoogle Scholar
  31. 31.
    Jesuthasan S (2012) Fear, anxiety and control in the zebrafish. Dev Neurobiol 72(3):395–403PubMedCrossRefGoogle Scholar
  32. 32.
    Liu NA, Huang H, Yang Z, Herzog W, Hammerschmidt M, Lin S, Melmed S (2003) Pituitary corticotroph ontogeny and regulation in transgenic zebrafish. Mol Endocrinol 17:959–966PubMedCrossRefGoogle Scholar
  33. 33.
    Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A Jr (2010) Measuring anxiety in zebrafish: a critical review. Behav Brain Res 214:157–171PubMedCrossRefGoogle Scholar
  34. 34.
    Maximino C, Marques de Brito T, Dias CA, Gouveia A Jr, Morato S (2010) Scototaxis as anxiety-like behavior in fish. Nat Protoc 5:209–216PubMedCrossRefGoogle Scholar
  35. 35.
    Steenbergen PJ, Richardson MK, Champagne D (2011) Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav Brain Res 222(1):15–25PubMedCrossRefGoogle Scholar
  36. 36.
    Stewart A, Maximino C, Marques de Brito T, Herculano AM, Gouveia A, Morato S, Cachat JM, Gaikwad S, Elegante MF, Hart PC, Kalueff A (2010) Neurophenotyping of adult zebrafish using the light/dark box paradigm. In: Kalueff AV, Cachat J (eds) Zebrafish neurobehavioral protocols. Springer Science, New YorkGoogle Scholar
  37. 37.
    Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, Utterback E, Gilder T, Kyzar E, Newman A, Carlos D, Chang K, Hook M, Rhymes C, Caffery M, Greenberg M, Zadina J, Kalueff AV (2011) Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 35(6):1421–1431PubMedCrossRefGoogle Scholar
  38. 38.
    Cachat J, Stewart A, Utterback E, Hart P, Gaikwad S, Wong K, Kyzar E, Wu N, Kalueff AV (2011) Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One 6(3):e17597PubMedCrossRefGoogle Scholar
  39. 39.
    Colwill RM, Creton R (2011) Imaging escape and avoidance behavior in zebrafish larvae. Rev Neurosci 22:63–73PubMedGoogle Scholar
  40. 40.
    Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15:2609–2622PubMedCrossRefGoogle Scholar
  41. 41.
    Irons TD, Macphail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32:84–90PubMedCrossRefGoogle Scholar
  42. 42.
    Jesuthasan SJ, Mathuru AS (2008) The alarm response in zebrafish: innate fear in a vertebrate genetic model. J Neurogenet 22:211–228PubMedCrossRefGoogle Scholar
  43. 43.
    Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ, Macrae CA, Shoichet B, Peterson RT (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6(3):231–237PubMedCrossRefGoogle Scholar
  44. 44.
    MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58PubMedCrossRefGoogle Scholar
  45. 45.
    Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351PubMedCrossRefGoogle Scholar
  46. 46.
    Oishi K, Nishio N, Konishi K, Shimokawa M, Okuda T, Kuriyama T, Machida K (2003) Differential effects of physical and psychological stressors on immune functions of rats. Stress 6:33–40PubMedCrossRefGoogle Scholar
  47. 47.
    Kavushansky A, Ben-Shachar D, Richter-Levin G, Klein E (2009) Physical stress differs from psychosocial stress in the pattern and time-course of behavioral responses, serum corticosterone and expression of plasticity-related genes in the rat. Stress 12:412–425PubMedCrossRefGoogle Scholar
  48. 48.
    Cordero MI, Merino JJ, Sandi C (1998) Correlational relationship between shock intensity and corticosterone secretion on the establishment and subsequent expression of contextual fear conditioning. Behav Neurosci 112:885–891PubMedCrossRefGoogle Scholar
  49. 49.
    Nusslein-Volhard C, Dahm R (2005) Zebrafish: practical approach, vol 261. Oxford University Press, TubingenGoogle Scholar
  50. 50.
    Dunlop R, Millsopp S, Laming P (2006) Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Appl Anim Behav Sci 97:255–271CrossRefGoogle Scholar
  51. 51.
    Millsopp S, Laming P (2008) Trade-offs between feeding and shock avoidance in goldfish (Carassius auratus). Appl Anim Behav Sci 113:247CrossRefGoogle Scholar
  52. 52.
    Dunlop RA, Laming PR, Smith TE (2004) The stress of four commercial farming practices, feeding, counting, grading and harvesting, in farmed rainbow trout, Oncorhynchus mykiss. Mar Freshw Behav Physiol 37:179–192CrossRefGoogle Scholar
  53. 53.
    Barry TP, Ochiai M, Malison JA (1995) In vitro effects of ACTH on interrenal corticosteroidogenesis during early larval development in rainbow trout. Gen Comp Endocrinol 99:382–387PubMedCrossRefGoogle Scholar
  54. 54.
    Huising MO, Metz JR, van Schooten C, Taverne-Thiele AJ, Hermsen T, Verburg-van Kemenade BM, Flik G (2004) Structural characterisation of a cyprinid (Cyprinus carpio L.) CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response. J Mol Endocrinol 32:627–648PubMedCrossRefGoogle Scholar
  55. 55.
    Huising MO, van der Aa LM, Metz JR, de Fatima Mazon A, Kemenade BM, Flik G (2007) Corticotropin-releasing factor (CRF) and CRF-binding protein expression in and release from the head kidney of common carp: evolutionary conservation of the adrenal CRF system. J Endocrinol 193:349–357PubMedCrossRefGoogle Scholar
  56. 56.
    Dickmeis T, Lahiri K, Nica G, Vallone D, Santoriello C, Neumann CJ, Hammerschmidt M, Foulkes NS (2007) Glucocorticoids play a key role in circadian cell cycle rhythms. PLoS Biol 5:e78PubMedCrossRefGoogle Scholar
  57. 57.
    Sink TD, Lochmann RT, Fecteau KA (2008) Validation, use, and disadvantages of enzyme-linked immunosorbent assay kits for detection of cortisol in channel catfish, largemouth bass, red pacu, and golden shiners. Fish Physiol Biochem 34:95–101PubMedCrossRefGoogle Scholar
  58. 58.
    Raff H, Homar PJ, Burns EA (2002) Comparison of two methods for measuring salivary cortisol. Clin Chem 48:207–208PubMedGoogle Scholar
  59. 59.
    Bernier NJ, Peter RE (2001) The hypothalamic-pituitary-interrenal axis and the control of food intake in teleost fish. Comp Biochem Physiol B Biochem Mol Biol 129:639–644PubMedCrossRefGoogle Scholar
  60. 60.
    Craig PM, Hogstrand C, Wood CM, McClelland GB (2009) Gene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio. Physiol Genomics 40:23–33PubMedCrossRefGoogle Scholar
  61. 61.
    Fuzzen ML, Alderman SL, Bristow EN, Bernier NJ (2011) Ontogeny of the corticotropin-releasing factor system in rainbow trout and differential effects of hypoxia on the endocrine and cellular stress responses during development. Gen Comp Endocrinol 170:604–612PubMedCrossRefGoogle Scholar
  62. 62.
    Filby AL, Paull GC, Bartlett EJ, Van Look KJ, Tyler CR (2010) Physiological and health consequences of social status in zebrafish (Danio rerio). Physiol Behav 101:576–587PubMedCrossRefGoogle Scholar
  63. 63.
    Fuzzen ML, Bernier NJ, Van Der Kraak G (2011) Differential effects of 17beta-estradiol and 11-ketotestosterone on the endocrine stress response in zebrafish (Danio rerio). Gen Comp Endocrinol 170:365–373PubMedCrossRefGoogle Scholar
  64. 64.
    Alsop D, Ings JS, Vijayan MM (2009) Adrenocorticotropic hormone suppresses gonadotropin-stimulated estradiol release from zebrafish ovarian follicles. PLoS One 4:e6463PubMedCrossRefGoogle Scholar
  65. 65.
    Hubner G, Brauchle M, Smola H, Madlener M, Fassler R, Werner S (1996) Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8:548–556PubMedCrossRefGoogle Scholar
  66. 66.
    von Krogh K, Sorensen C, Nilsson GE, Overli O (2010) Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments. Physiol Behav 101:32–39CrossRefGoogle Scholar
  67. 67.
    Cachat J, Canavello P, Elegante M, Bartels B, Hart P, Bergner C, Egan R, Duncan A, Tien D, Chung A, Wong K, Goodspeed J, Tan J, Grimes C, Elkhayat S, Suciu C, Rosenberg M, Chung KM, Kadri F, Roy S, Gaikwad S, Stewart A, Zapolsky I, Gilder T, Mohnot S, Beeson E, Amri H, Zukowska Z, Soignier RD, Kalueff AV (2010) Modeling withdrawal syndrome in zebrafish. Behav Brain Res 208:371–376PubMedCrossRefGoogle Scholar
  68. 68.
    Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J, Gilder T, Wu N, Dileo J, Cachat J, Kalueff AV (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas JK, Janz DM (2011) Dietary selenomethionine exposure in adult zebrafish alters swimming performance, energetics and the physiological stress response. Aquat Toxicol 102:79–86PubMedCrossRefGoogle Scholar
  70. 70.
    Grossman L, Stewart A, Gaikwad S, Utterback E, Wu N, Dileo J, Frank K, Hart P, Howard H, Kalueff AV (2011) Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull 85:58–63PubMedCrossRefGoogle Scholar
  71. 71.
    Piato AL, Capiotti KM, Tamborski AR, Oses JP, Barcellos LJ, Bogo MR, Lara DR, Vianna MR, Bonan CD (2011) Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog Neuropsychopharmacol Biol Psychiatry 35:561–567PubMedCrossRefGoogle Scholar
  72. 72.
    Powers JW, Mazilu JK, Lin S, McCabe ER (2010) The effects of hyperglycemia on adrenal cortex function and steroidogenesis in the zebrafish. Mol Genet Metab 101:421–422PubMedCrossRefGoogle Scholar
  73. 73.
    Schaaf MJ, Chatzopoulou A, Spaink HP (2009) The zebrafish as a model system for glucocorticoid receptor research. Comp Biochem Physiol A Mol Integr Physiol 153:75–82PubMedCrossRefGoogle Scholar
  74. 74.
    Schoonheim PJ, Chatzopoulou A, Schaaf MJ (2010) The zebrafish as an in vivo model system for glucocorticoid resistance. Steroids 75(12):918–925PubMedCrossRefGoogle Scholar
  75. 75.
    Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int J Comp Psychol 23:43–61PubMedGoogle Scholar
  76. 76.
    Schmidt MV (2010) Molecular mechanisms of early life stress—lessons from mouse models. Neurosci Biobehav Rev 34:845–852PubMedCrossRefGoogle Scholar
  77. 77.
    Levine S (2005) Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 30:939–946PubMedCrossRefGoogle Scholar
  78. 78.
    Levine S (2001) Primary social relationships influence the development of the hypothalamic–pituitary–adrenal axis in the rat. Physiol Behav 73:255–260PubMedCrossRefGoogle Scholar
  79. 79.
    Levine S (1994) The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors. Ann N Y Acad Sci 746:275–288; discussion 289–293Google Scholar
  80. 80.
    Schmidt MV, Enthoven L, van der Mark M, Levine S, de Kloet ER, Oitzl MS (2003) The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse. Int J Dev Neurosci 21:125–132PubMedCrossRefGoogle Scholar
  81. 81.
    Barry TP, Malison JA, Held JA, Parrish JJ (1995) Ontogeny of the cortisol stress response in larval rainbow trout. Gen Comp Endocrinol 97:57–65PubMedCrossRefGoogle Scholar
  82. 82.
    Champagne DL, de Kloet ER, Joels M (2009) Fundamental aspects of the impact of glucocorticoids on the (immature) brain. Semin Fetal Neonatal Med 14:136–142PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Peter J. Steenbergen
    • 1
  • Juriaan R. Metz
    • 2
    • 3
  • Gert Flik
    • 2
    • 3
  • Michael K. Richardson
    • 1
  • Danielle L. Champagne
    • 1
    • 2
  1. 1.Department of Integrative Zoology, Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Department of Organismal Animal Physiology, Institute for Water and Wetland ResearchNijmegen UniversityNijmegenThe Netherlands
  3. 3.Institute for Water and Wetland Research Faculty of ScienceRadboud University NijmegenAJ NijmegenThe Netherlands

Personalised recommendations