The Light–Dark Preference Test for Larval Zebrafish

  • Peter J. Steenbergen
  • Michael K. Richardson
  • Danielle L. Champagne
Protocol
Part of the Neuromethods book series (NM, volume 66)

Abstract

The light–dark preference test is one of the most commonly used anxiety models in animal preclinical studies. This test assesses spontaneous/natural tendency of an animal to explore/avoid certain zones of a given environment, for instance a half black-half white box. This test has been validated for use in adult but not larval zebrafish. Here we provide the first method for assessing anxiety-like behaviors in the light–dark preference test in zebrafish larvae. We also provide a pharmacological validation of this assay as well as a simple method to render it more versatile for screening of both anxiolytic and anxiogenic drugs. This is important since the ability to characterize and document the behavior of larval zebrafish is crucial in the current research era, where zebrafish has been rapidly propelled at the forefront of high-throughput technology. Therefore, this 5-min protocol will not only contributes to enriching the repertoire of assays customized for larval zebrafish but also provides a method to assess complex phenotypes of brain function while being eventually amenable to high-throughput screening in the near future.

Key words

Anxiety Automation Avoidance behavior Development Drug screening Exploration Stress Hypothalamic-pituitary-interrenal axis 

Notes

Acknowledgment

The authors gratefully acknowledge the support of the Smart Mix Program of The Netherlands Ministry of Economic Affairs and The Netherlands Ministry of Education, Culture and Science.

References

  1. 1.
    Steenbergen PJ, Richardson MK, Champagne DL (2010) The use of the zebrafish model in stress research. Prog Neuropsychopharmacol Biol Psychiatry 35(6):1432–1451PubMedCrossRefGoogle Scholar
  2. 2.
    Steenbergen PJ, Richardson MK, Champagne D (2011) Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav Brain Res 222(1):15–25PubMedCrossRefGoogle Scholar
  3. 3.
    Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 463:55–65PubMedCrossRefGoogle Scholar
  4. 4.
    Hascoet M, Bourin M, Dhonnchadha BA (2001) The mouse light-dark paradigm: a review. Prog Neuropsychopharmacol Biol Psychiatry 25:141–166PubMedCrossRefGoogle Scholar
  5. 5.
    Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK (2010) Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res 214:332–342PubMedCrossRefGoogle Scholar
  6. 6.
    Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782PubMedCrossRefGoogle Scholar
  7. 7.
    Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 208:56–62PubMedCrossRefGoogle Scholar
  8. 8.
    Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J, Gilder T, Wu N, Dileo J, Cachat J, Kalueff AV (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284PubMedCrossRefGoogle Scholar
  9. 9.
    Guo S (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3:63–74PubMedCrossRefGoogle Scholar
  10. 10.
    Maximino C, da Silva AW, Gouveia A Jr, Herculano AM (2011) Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Prog Neuropsychopharmacol Biol Psychiatry 35(2):624–631PubMedCrossRefGoogle Scholar
  11. 11.
    Maximino C, de Brito TM, Colmanetti R, Pontes AA, de Castro HM, de Lacerda RI, Morato S, Gouveia A Jr (2010) Parametric analyses of anxiety in zebrafish scototaxis. Behav Brain Res 210:1–7PubMedCrossRefGoogle Scholar
  12. 12.
    Serra EL, Medalha CC, Mattioli R (1999) Natural preference of zebrafish (Danio rerio) for a dark environment. Braz J Med Biol Res 32:1551–1553PubMedCrossRefGoogle Scholar
  13. 13.
    Stewart A, Maximino C, Marques de Brito T, Herculano AM, Gouveia A, Morato S, Cachat JM, Gaikwad S, Elegante MF, Hart PC, Kalueff A (2010) Neurophenotyping of adult zebrafish using the light/dark box paradigm. In: Kalueff AV, Cachat J (eds) Zebrafish neurobehavioral protocols. Springer Science, New YorkGoogle Scholar
  14. 14.
    Stephenson JF, Whitlock KE, Partridge JC (2011) Zebrafish preference for light or dark is dependent on ambient light levels and olfactory stimulation. Zebrafish 8(1):17–22PubMedCrossRefGoogle Scholar
  15. 15.
    Lau BY, Mathur P, Gould GG, Guo S (2011) Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proc Natl Acad Sci U S A 108:2581–2586PubMedCrossRefGoogle Scholar
  16. 16.
    Maximino C, Marques de Brito T, Dias CA, Gouveia A Jr, Morato S (2010) Scototaxis as anxiety-like behavior in fish. Nat Protoc 5:209–216PubMedCrossRefGoogle Scholar
  17. 17.
    Nusslein-Volhard c, Dahm R (2005) Zebrafish: paractical approach, vol 261. Oxford University Press, TubingenGoogle Scholar
  18. 18.
    Bouwknecht JA, Paylor R (2008) Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behaviour in rodents. Behav Pharmacol 19:385–402PubMedCrossRefGoogle Scholar
  19. 19.
    Wong K, Elegante M, Bartels B, Elkhayat S, Tien D, Roy S, Goodspeed J, Suciu C, Tan J, Grimes C, Chung A, Rosenberg M, Gaikwad S, Denmark A, Jackson A, Kadri F, Chung KM, Stewart A, Gilder T, Beeson E, Zapolsky I, Wu N, Cachat J, Kalueff AV (2010) Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 208:450–457PubMedCrossRefGoogle Scholar
  20. 20.
    Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44PubMedCrossRefGoogle Scholar
  21. 21.
    Maximino C, Lima MG, Olivera KR, Picanco-Diniz DL, Herculano AM (2011) Adenosine A(1), but not A(2), receptor blockade increases anxiety and arousal in zebrafish. Basic Clin Pharmacol Toxicol 109(3):203–207PubMedCrossRefGoogle Scholar
  22. 22.
    Wong K, Stewart A, Gilder T, Wu N, Frank K, Gaikwad S, Suciu C, Dileo J, Utterback E, Chang K, Grossman L, Cachat J, Kalueff AV (2010) Modeling seizure-related behavioral and endocrine phenotypes in adult zebrafish. Brain Res 1348:209–215PubMedCrossRefGoogle Scholar
  23. 23.
    Rana N, Moond M, Marthi A, Bapatla S, Sarvepalli T, Chatti K, Challa AK (2010) Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: an effective system for experiments in chemical biology. Zebrafish 7:69–81PubMedCrossRefGoogle Scholar
  24. 24.
    Berghmans S, Hunt J, Roach A, Goldsmith P (2007) Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 75:18–28PubMedCrossRefGoogle Scholar
  25. 25.
    Brittijn SA, Duivesteijn SJ, Belmamoune M, Bertens LF, Bitter W, de Bruijn JD, Champagne DL, Cuppen E, Flik G, Vandenbroucke-Grauls CM, Janssen RA, de Jong IM, de Kloet ER, Kros A, Meijer AH, Metz JR, van der Sar AM, Schaaf MJ, Schulte-Merker S, Spaink HP, Tak PP, Verbeek FJ, Vervoordeldonk MJ, Vonk FJ, Witte F, Yuan H, Richardson MK (2009) Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol 53:835–850PubMedCrossRefGoogle Scholar
  26. 26.
    Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15:2609–2622PubMedCrossRefGoogle Scholar
  27. 27.
    Guo S (2009) Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin Drug Discov 4:715–726PubMedCrossRefGoogle Scholar
  28. 28.
    Kari G, Rodeck U, Dicker AP (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82:70–80PubMedCrossRefGoogle Scholar
  29. 29.
    Peterson RT, Fishman MC (2004) Discovery and use of small molecules for probing biological processes in zebrafish. Methods Cell Biol 76:569–591PubMedCrossRefGoogle Scholar
  30. 30.
    Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351PubMedCrossRefGoogle Scholar
  31. 31.
    Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66PubMedCrossRefGoogle Scholar
  32. 32.
    Kokel D, Peterson RT (2008) Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct Genomic Proteomic 7:483–490PubMedCrossRefGoogle Scholar
  33. 33.
    Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ, Macrae CA, Shoichet B, Peterson RT (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6(3):231–237PubMedCrossRefGoogle Scholar
  34. 34.
    Gutman DA, Nemeroff CB (2003) Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiol Behav 79:471–478PubMedCrossRefGoogle Scholar
  35. 35.
    Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Peter J. Steenbergen
    • 1
  • Michael K. Richardson
    • 1
  • Danielle L. Champagne
    • 1
    • 2
  1. 1.Department of Integrative Zoology, Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Department of Organismal Animal Physiology, Institute for Water and Wetland ResearchNijmegen UniversityNijmegenThe Netherlands

Personalised recommendations