TagFinder: Preprocessing Software for the Fingerprinting and the Profiling of Gas Chromatography–Mass Spectrometry Based Metabolome Analyses

Part of the Methods in Molecular Biology book series (MIMB, volume 860)


GC-MS based metabolome studies aim for the complete identification and relative or absolute quantification of metabolites in complex extracts from a large diversity of biological materials. The resulting high-throughput chromatography data files are typically processed following two complementary workflows, namely, fingerprinting and profiling. For fingerprinting studies all observed mass features, here called mass spectral tags (MSTs), are quantified in a nontargeted and (within the limits of the GC-MS technology) comprehensive approach. Fingerprinting allows for the discovery of MSTs, which, in the sense of a biomarker, indicate significant changes of metabolite pool sizes. The significance and relevance of such MSTs are typically tested in comparison to standardized reference samples. Only after this confirmation step are the relevant MSTs identified and the underlying metabolic biomarkers elucidated. Both the metabolite fingerprinting and profiling approaches are essential to modern biotechnological investigations. Studies which are aimed at establishing the substantial equivalence at metabolic level or aim to breed for optimum quality of human food or animal feed especially benefit from the potential to discover novel unforeseen metabolic factors in fingerprinting approaches and from the option to demonstrate unchanged pool sizes of known metabolites in the metabolic profiling mode. As GC-MS technology represents one essential element which contributes to investigations of substantial equivalence, we have developed a dedicated software tool, the TagFinder chromatography data preprocessing suite, which has all essential functions to support both fundamental workflows of modern metabolomic studies. In this chapter, we describe the TagFinder software and its application to the assessment of metabolic phenotypes in fingerprinting and profiling analyses.

Key words

Mass spectral tags Nontargeted fingerprint analysis Targeted profiling analysis Peak extraction Spectral reconstruction GC-MS profiling Chromatography data processing 



This work received initial funding by the Max Planck Society and was subsequently supported by the EU as part of the Framework VI initiative within the plant metabolomics project META-PHOR (FOOD-CT-2006-036220). The authors acknowledge the long-standing support and encouragement by Prof. L. Willmitzer, Max Planck Institute of Molecular Plant Physiology (MPI-MP), Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany. LvM and JK acknowledge the support by the EU GRASP project, ERA-Net Plant Genomics 0313996B, Research-Assisted Breeding for the Sustainable Production of Quality Grapes and Wines.


  1. 1.
    Luedemann, A., Strassburg, K., Erban, A., and Kopka, J. (2008) TagFinder for the quantitative analysis of gas chromatography – mass spectrometry (GC-MS) based metabolite profiling experiments Bioinformatics 24, 732–737.PubMedCrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A.R. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protocols 1, 387–396.Google Scholar
  5. 5.
    Erban, A., Schauer, N., Fernie, A.R., and Kopka, J. (2007) Non-supervised construction and application of mass spectral and retention time index libraries from time-of-flight GC-MS metabolite profiles. In Metabolomics: methods and protocols (Weckwerth, W. Ed.). Humana Press, Totowa, pp 19–38.Google Scholar
  6. 6.
    Saeed, A.I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N. et al. (2003) TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378.PubMedGoogle Scholar
  7. 7.
    Saeed, A.I., Hagabati, N.K., Braisted, J.C., Liang, W., Sharov, V., Howe, E.A. et al. (2006) TM4 microarray software suite. Methods Enzymol 411, 134–193.PubMedCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Ausloos, P., Clifton, C.L., Lias, S.G., Mikaya, A.I., Stein, S.E., Tchekhovskoi, D.V. et al. (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom 10, 287–299.Google Scholar
  10. 10.
    Halket, J.M., Przyborowska, A., Stein, S.E., Mallard, W.G., Down, S., and Chalmers, R.A. (1999) Deconvolution gas chromatography mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom 13, 279–284.Google Scholar
  11. 11.
    Halket, J.M., Waterman, D., Przyborowska, A.M., Patel, R.K.P., Fraser, P.D., and Bramley, P.M. (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56, 219–243.Google Scholar
  12. 12.
    Kovàts, E.S. (1958) Gas-chromatographische Charakterisierung organischer Verbindungen: Teil 1. Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 41, 1915–1932.Google Scholar
  13. 13.
    Van den Dool, H., and Kratz, P.D. (1963) A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr 11, 463–471.CrossRefGoogle Scholar
  14. 14.
    Stein, S.E. (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10, 770–781.Google Scholar
  15. 15.
    Lu, H., Dunn, W.B., Shen, H., Kell, D.B., and Liang, Y. (2008). Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS. Trends Anal Chem 27, 215–227.Google Scholar
  16. 16.
    Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmueller, E. et al. (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638.PubMedCrossRefGoogle Scholar
  17. 17.
    Strehmel, N., Hummel, J., Erban, A., Strassburg, K., and Kopka, J. (2008) Estimation of retention index thresholds for compound matching using routine gas chromatography–mass spectrometry based metabolite profiling experiments. J Chromatogr B 871, 182–190.Google Scholar
  18. 18.
    Batagelj, V., and Mrvar, A. (2004) Pajek – Analysis and visualization of large Networks. In Graph Drawing Software (Jünger, M., and Mutzel, P. Eds.). Springer Publishers, Berlin, Heidelberg, pp 77–103.Google Scholar
  19. 19.
    Huege, J., Sulpice, R., Gibon, Y., Lisec, J., Koehl, K., and Kopka, J. (2007) GC-EI-TOF-MS analysis of in vivo-carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after (13CO2)-labelling. Phytochemistry 68, 2258–2272.PubMedCrossRefGoogle Scholar
  20. 20.
    Birkemeyer, C., Luedemann, A., Wagner, C., Erban, A., and Kopka, J. (2005) Metabolome analysis: the potential of in vivo-labeling with stable isotopes for metabolite profiling. Trends Biotechnol 23, 28–33.Google Scholar
  21. 21.
  22. 22.
    Lommen, A., van der Weg, G., van Engelen, M.C., Bor, G., Hoogenboom, L.A.P., and Nielen, M.W.F. (2007) An untargeted metabolomics approach to contaminant analysis – Pinpointing potential unknown compounds. Analytica Chimica Acta 584, 43–49.PubMedCrossRefGoogle Scholar
  23. 23.
    de Vos, C.H.R., Moco, S., Lommen, A., Keurentjes, J.J.B., Bino, R.J., and Hall, R.D. (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protocols 2, 778–791.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-GolmGermany

Personalised recommendations