Plant Metabolomics pp 157-176

Part of the Methods in Molecular Biology book series (MIMB, volume 860) | Cite as

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Plant Metabolite Profiling and Metabolite Identification

  • J. William Allwood
  • David Parker
  • Manfred Beckmann
  • John Draper
  • Royston Goodacre
Protocol

Abstract

Mass spectrometry (MS) is usually the technique of choice for metabolomic studies where the volume of sample material is too limited for applications employing nuclear magnetic resonance (NMR) spectroscopy. With the advent of ultra-high accuracy mass spectrometers such as the Orbitrap (resolution ∼ 105) and the Fourier Transform Ion Cyclotron Resonance (FT-ICR) analysers (resolution potentially in excess of 106) there is the opportunity to generate an accurate mass fingerprint (often referred to as a profile since the variables are considered as effectively discrete) of an infused sample extract. In such data representations mass “peaks” are detected in the raw data and the centroid mass intensity calculated. The resolving power and sensitivity of these ultra-high accuracy mass analysers is such that metabolite signals from molecules containing naturally abundant elemental isotopes (e.g. 13C, 41K, 15N, 17O, 34S, and 37Cl) are visible in the data. Such is the instruments precision that it allows for the calculation of highly accurate elemental compositions for the unknown signals, thus aiding greatly in the selection of potential metabolite candidates for the annotation of unknowns prior to their confirmation by comparisons to analytical standards. The application of FT-ICR-MS to plant metabolomics has thus far been limited to a few studies and clear step-by-step methodologies are as yet unavailable. This chapter presents a rigorous method for the extraction and FT-ICR-MS analysis of plant leaf tissues as well as downstream data processing.

Key words

FT-ICR-MS DI FI ESI CID Plant metabolomics 

Abbreviations

DI

Direct infusion

FI

Flow infusion

FT

Fourier transform

ICR

Ion cyclotron resonance

MS

Mass spectrometry

ESI

Electrospray ionisation

LTQ

Linear trap quadrupole

CID

Collision-induced dissociation

QC

Quality control

PCA

Principal components analysis

LDA

Linear discriminant analysis

RF

Random forest

References

  1. 1.
    Brown, S.C., Kruppa, G., Dasseux, J.-L. (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spec. Rev. 24, 223–231.CrossRefGoogle Scholar
  2. 2.
    Hughey, C.A., Rodgers, R.P., Marshall, A.G. (2002) Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal. Chem. 74, 4145–4149.PubMedCrossRefGoogle Scholar
  3. 3.
    Barrow, M.P., Burkitt, W.I., Derrick, P.J. (2005) Principles of Fourier transform ion cyclotron mass spectrometry and its application in structural biology. The Analyst 130, 18–28.PubMedCrossRefGoogle Scholar
  4. 4.
    Aharoni, A., De Vos, C.H.R., Verhoeven, H.A., Maliepaard, C.A., Kruppa, G., Bino, R., Goodenowe, D.B. (2002) Nontargeted Meta-bolome Analysis by Use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics 6, 217–234.PubMedCrossRefGoogle Scholar
  5. 5.
    Parker, D., Beckmann, M., Enot, D.P., Overy, D.P., Caracuel Rios, Z., Gilbert, M., Talbot, N., Draper, D. (2008) Rice blast infection of Brachypodium distachyon as a model system to study dynamic host pathogen interactions. Naure. Prot. 3, 435–445.CrossRefGoogle Scholar
  6. 6.
    Allwood, J.W., Ellis, D.I., Heald, J.K., Goodacre, R., Mur, L.A.J. (2006) Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. The Plant J 46, 351–368.CrossRefGoogle Scholar
  7. 7.
    Koulman, A., Woffendin, G., Narayana, V.K., Welchman, H., Crone, C., Volmer, D.A. (2009) High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation orbitrap mass spectrometer. Rapid Communications in Mass Spectr. 23, 1411 – 1418.CrossRefGoogle Scholar
  8. 8.
    Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T., Saito, K. (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. PNAS USA 101, 10205–10210.PubMedCrossRefGoogle Scholar
  9. 9.
    Nakamura, Y., Kimura, A., Saga, H., Oikawa, A., Shinbo, Y., Kai, K., Sakurai, N., Suzuki, H., Kitayama, M., Shibata, D., Kanaya, S., Ohta, D. (2007) Differential metabolomics unravelling light/dark regulation of metabolic activities in Arabidopsis cell cultures. Planta 227, 57–66.PubMedCrossRefGoogle Scholar
  10. 10.
    Ohta, D., Shibata, D., Kanaya, S. (2007) Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Anal. Bioanal. Chem. 389, 1469–1475.PubMedCrossRefGoogle Scholar
  11. 11.
    Enot, D.P., Lin, W., Beckmann, M., Parker, D., Overy, D.P., Draper, J. (2008) Preprocessing, classification modelling and feature selection using flow injection electrospray mass spectrometry metabolite fingerprint data. Nature Prot. 3, 446–470.CrossRefGoogle Scholar
  12. 12.
    Draper, J., Enot, D.P., Parker, D., Beckmann, M., Snowdon, S., Lin, W., Zubair, H. (2009) Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics 10, 227.PubMedCrossRefGoogle Scholar
  13. 13.
    Kind, T. and Fiehn, O. (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8, 105.PubMedCrossRefGoogle Scholar
  14. 14.
    Enot, D.P., Beckmann, M., Draper, J. (2007) Detecting a difference – assessing generalisability when modelling metabolome fingerprint data in longer term studies of genetically modified plants. Metabolomics 3, 335–347.CrossRefGoogle Scholar
  15. 15.
    Jolliffe (1986) Principle Components Analysis. Springer-Verlag, New York.Google Scholar
  16. 16.
    Goodacre, R. (2007) Metabolomics of a superorganism. J. Nutrition 137, 259 S–266 S.Google Scholar
  17. 17.
    Goodacre, R. Vaidyanathan, S., Dunn, W.B., Harrigan, G.G., Kell, D.B. (2004) Metabolomics by numbers – acquiring and understanding global metabolite data. Trends Biotech. 22, 245–252.CrossRefGoogle Scholar
  18. 18.
    Enot, D.P., Beckmann, M., Overy, D., Draper, J. (2006) Predicting interpretability of metabolome models based on behavior, putative identity, and biological relevance of explanatory signals. PNAS USA 103 14865–14870.PubMedCrossRefGoogle Scholar
  19. 19.
    Enot, D.P. and Draper, J. (2007) Statistical measures for validating plant genotype similarity assessments following multivariate analysis of metabolome fingerprint data. Metabolomics 3, 349–355.CrossRefGoogle Scholar
  20. 20.
    Goodacre, R., York, E.V., Heald, J.K., Scott, I.M. (2003) Chemometric discrimination of unfractionated plant extracts profiled by flow-injection electrospray mass spectrometry. Phytochem. 62, 859–863.CrossRefGoogle Scholar
  21. 21.
    Johnson, H.E., Broadhurst, D., Goodacre, R., Smith, A.R. (2003) Metabolic fingerprinting in salt-stressed tomatoes. Phytochem. 62, 919–928.CrossRefGoogle Scholar
  22. 22.
    Brown, M., Dunn, W.B., Dobson, P., Patel, Y., Winder, C.L., Francis-McIntyre, S., Begley, P., Carroll, K., Broadhurst, D., Tseng, A., Swainston, N., Spasic, I., Goodacre, R., Kell, D.B. (2009) Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. The Analyst 134, 1322–1332.PubMedCrossRefGoogle Scholar
  23. 23.
    Overy, D.P., Enot, D.P., Tailliart, K., Jenkins, H., Parker, D., Beckmann, M., Draper, J. (2008) Explanatory signal interpretation and metabolite identification strategies for nominal mass FIE-MS metabolite fingerprints. Nature Prot. 3, 471–485.CrossRefGoogle Scholar
  24. 24.
    Laskin, J. and Futrell, J.H. (2005) Activation of large ions in FT-ICR mass spectrometry. Mass Spec. Rev. 24, 135–167.CrossRefGoogle Scholar
  25. 25.
    Beckmann, M., Parker, D., Enot, D.P., Duval, E., Draper, J. (2008) High-throughput metabolome fingerprinting using Flow Injection Electrospray Mass Spectrometry. Nature Prot. 3, 486–504.CrossRefGoogle Scholar
  26. 26.
    Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R.N., Willmitzer, L. (2000) Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161.PubMedCrossRefGoogle Scholar
  27. 27.
    Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., Fernie, A.R. (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Prot. 1, 387–396.CrossRefGoogle Scholar
  28. 28.
    Biais, B. and Allwood, J.W., Deborde, C., Xu, Y., Maucourt, M., Beauvoit, B., Dunn, W.B., Jacob, D., Goodacre, R., Rolin, D., Moing, A. (2009) 1H-NMR, GC-EI-TOF-MS, and data set correlation for fruit metabolomics, application to melon. Anal. Chem. 81, 28842894.PubMedCrossRefGoogle Scholar
  29. 29.
    Allwood, J.W. and Erban, A., de Koning, S., Dunn, W.B., Luedemann, A., Lommen, A., Kay, L., Löscher, R., Kopka, J., Goodacre, R. (2009) Inter-laboratory reproducibility of fast gas chromatography – electron impact – time of flight mass spectrometry (GC-EI-TOFMS) based plant metabolomics. Metabolomics 5, 479–496.PubMedCrossRefGoogle Scholar
  30. 30.
    Broadhurst, D.I. and Kell, D.B. (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171–196.CrossRefGoogle Scholar
  31. 31.
    Taylor, N.S., Weber, R.J.M., Southam, A.D., Payne, T.G., Hrydziuszko, O., Arvanitis, T.N., Viant, M.R. (2009) A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics 5, 44–58.CrossRefGoogle Scholar
  32. 32.
    Southam, A.D., Payne, T.G., Cooper, H.J., Arvanitis, T.N., Viant, M.R. (2007) Dynamic Range and Mass Accuracy of Wide-Scan Direct Infusion Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabolomics Increased by the Spectral Stitching Method. Anal. Chem. 79, 45954602.PubMedCrossRefGoogle Scholar
  33. 33.
    Payne, T.G., Southam, A.D., Arvanitis, T.N., Viant, M.R. (2009) A Signal Filtering Method for Improved Quantification and Noise Discri-mination in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabo-lomics Data. JASMS 20 1087–1095.Google Scholar
  34. 34.
    Beckmann, M., Enot, D.P., Overy, D.P., Draper, J. (2007) Representation, comparison, and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. J. Ag. Food Chem. 55, 3444–3451.CrossRefGoogle Scholar
  35. 35.
    Breitling, R., Pitt, A.R., Barrett, M.P. (2006) Precision mapping of the metabolome. Trends Biotech. 24, 543548.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. William Allwood
    • 1
    • 2
  • David Parker
    • 1
  • Manfred Beckmann
    • 1
  • John Draper
    • 1
  • Royston Goodacre
    • 2
    • 3
  1. 1.IBERS – Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUK
  2. 2.School of Chemistry, Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK
  3. 3.Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary BiocentreThe University of ManchesterManchesterUK

Personalised recommendations