DNA Barcodes pp 311-338 | Cite as

DNA Extraction, Preservation, and Amplification

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 858)

Abstract

The effectiveness of DNA barcoding as a routine practice in biodiversity research is strongly dependent on the quality of the source material, DNA extraction method, and selection of adequate primers in combination with optimized polymerase chain reaction (PCR) conditions. For the isolation of nucleic acids, silica-gel membrane methods are to be favored because they are easy to handle, applicable for high sample throughput, relatively inexpensive, and provide high DNA quality, quantity, and purity which are pre­requisites for successful PCR amplification and long-term storage of nucleic acids in biorepositories, such as DNA banks. In this section, standard protocols and workflow schemes for sample preparation, DNA isolation, DNA storage, PCR amplification, PCR product quality control, and PCR product cleanup are proposed and described in detail. A PCR troubleshooting and primer design section may help to solve problems that hinder successful amplification of the desired barcoding gene region.

Key words

DNA barcoding DNA extraction DNA preservation PCR amplification Agarose gel electrophoresis PCR cleanup 

References

  1. 1.
    Rohland N, Siedel H, Hofreiter M (2004) Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. Biotechniques 36:814–821PubMedGoogle Scholar
  2. 2.
    Chakraborty A, Sakai M, Iwatsuki Y (2006) Museum fish specimens and molecular taxonomy: a comparative study on DNA extraction protocols and preservation techniques. J Appl Ichthyol 22:160–166CrossRefGoogle Scholar
  3. 3.
    Gilbert TMP, Moore W, Melchior L, Worobey M (2007) DNA extraction from dry museum beetles without conferring external morphological damage. PLoS ONE 2:e272PubMedCrossRefGoogle Scholar
  4. 4.
    France SC, Kocher TD (1996) DNA sequencing of formalin-fixed crustaceans from archival research collections. Mol Mar Biol Biotech 5:304–313Google Scholar
  5. 5.
    Chase MR, Etter RJ, Rex MA, Quattro JM (1998) Extraction and amplification of mitochondrial DNA from formalin-fixed deep-sea molluscs. Biotechniques 24:243–247PubMedGoogle Scholar
  6. 6.
    Chatigny ME (2000) The extraction of DNA from formalin-fixed, ethanol-preserved reptile and amphibian tissues. Herpetol Rev 31:86–87Google Scholar
  7. 7.
    Schander C, Halanych KM (2003) DNA, PCR and formalinized animal tissue – a short review and protocols. Org Divers Evol 3:195–205CrossRefGoogle Scholar
  8. 8.
    Coura R, Prolla JC, Meurer L, Ashton-Prolla P (2008) An alternative protocol for DNA extraction from formalin fixed and paraffin wax embedded tissue. J Clin Pathol 58:894–895CrossRefGoogle Scholar
  9. 9.
    Zetzsche H, Klenk H-P, Raupach MJ, Knebelsberger T, Gemeinholzer B (2008) Comparison of methods and protocols for routine DNA extraction in the DNA Bank Network. In: Gradstein R, Klatt S, Normann F, Weigelt P, Willmann R, Wilson R (eds) Systematics. Universitätsverlag Göttingen, Göttingen, p 354Google Scholar
  10. 10.
    Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9:409Google Scholar
  11. 11.
    Van Moorsel CHM, Van Nes WJ, Megens HJ (2000) A quick, simple, and inexpensive mollusc DNA extraction protocol for PCR-based techniques. Malacologia 42:203–206Google Scholar
  12. 12.
    Pirttilä AM, Hisikorpi M, Kämäräinen T et al (2001) DNA isolation methods for medical and aromatic plants. Plant Mol Biol Rep 19:273a–fGoogle Scholar
  13. 13.
    Nishiguchi MK, Doukakis P, Egan M et al (2002) DNA isolation procedures. In: DeSalle R, Giribet G, Wheeler WC (eds) Methods and tools in biosciences and medicine: techniques in molecular systematics and evolution. Birkhäuser Verlag, Basel, pp 249–287Google Scholar
  14. 14.
    Thomson JA (2002) An improved non-cryogenic transport and storage preservative facilitating DNA extraction from ‘difficult’ plants collected at remotes site. Telopea 9:755–760Google Scholar
  15. 15.
    Skujienė G, Soroka M (2003) A comparison of different DNA extraction methods for slugs (Mollusca: Pulmonata). Ekologija 1:12–16Google Scholar
  16. 16.
    Bhadury P, Austen MC, Bilton BT et al (2006) Exploitation of archived marine nematodes – a hot lysis DNA extraction protocol for molecular studies. Zool Scr 36:93–98CrossRefGoogle Scholar
  17. 17.
    Schill RO (2007) Comparison of different protocols for DNA preparation and PCR amplification of mitochondrial genes of tardigrades. J Limnol 66:164–170CrossRefGoogle Scholar
  18. 18.
    Sands CJ, Convey P, Linse K, McInnes SJ (2008) Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using Tardigrada. BMC Ecol 8:7PubMedCrossRefGoogle Scholar
  19. 19.
    Schizas NV, Street GT, Coull BC, Chandler GT, Quattro JM (1997) An effective DNA extraction method for small metazoans. Mol Mar Biol Biotech 6:381–383Google Scholar
  20. 20.
    Porco D, Rougerie R, Deharveng L, Hebert P (2010) Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied Arthropods in a high-throughput context: the example of Collembola. Mol Ecol Res 10: 942–945CrossRefGoogle Scholar
  21. 21.
    Hill CA, Gutierrez JA (2003) A method for extraction and analysis of high quality genomic DNA from ixodid ticks. Med Vet Entomol 17:224–227PubMedCrossRefGoogle Scholar
  22. 22.
    Halos L, Jamal T, Vial L et al (2004) Determination of an efficient and reliable method for DNA extraction from ticks. Vet Res 35:709–713PubMedCrossRefGoogle Scholar
  23. 23.
    Mtambo J, van Bortel W, Madder M et al (2006) Comparison of preservation methods of Rhipicephalus appendiculatus (Acari: Ixodidae) for reliable DNA amplification by PCR. Exp Appl Acar 38:189–199CrossRefGoogle Scholar
  24. 24.
    Zhang D, Yang Y, Castlebury LA, Cerniglia CE (1996) A method for the large scale transformation efficiency fungal genomic DNA. FEMS Microbiol Lett 145:261–265PubMedCrossRefGoogle Scholar
  25. 25.
    Fredricks DN, Smith C, Meier A (2005) Comparsion of six DNA extraction methods for recovery of fungal DNA assessed by quantitative PCR. J Clin Microbiol 43:5122–5128PubMedCrossRefGoogle Scholar
  26. 26.
    Muller FM, Werner KE, Kasai M et al (1998) Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption. J Clin Micobiol 36:1625–1629Google Scholar
  27. 27.
    Csaikl UM, Bastian H, Brettschneider R et al (1998) Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol Biol Report 16:69–86CrossRefGoogle Scholar
  28. 28.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  29. 29.
    Drabkowa L, Kirschner J, Vlcek C (2002) Comparison of seven DNA extraction and amplification protocols in historical herbarium specimen of Juncaceae. Plant Mol Biol Report 20:161–175CrossRefGoogle Scholar
  30. 30.
    Shepherd M, Cross M, Stokoe RL et al (2002) High-throughput DNA extraction from forest trees. Plant Mol Biol Rep 20:425a–425jCrossRefGoogle Scholar
  31. 31.
    Haymes KM, Ibrahim IA, Mischke S et al (2004) Rapid isolation of DNA from chocolate and date palm tree crops. J Agric Food Chem 52:5456–5462PubMedCrossRefGoogle Scholar
  32. 32.
    Ribeiro RA, Lovato MB (2007) Comparative analysis of different DNA extraction protocols in fresh and herbarium specimens of the genus Dalbergia. Gen Mol Res 6:173–187Google Scholar
  33. 33.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedCrossRefGoogle Scholar
  34. 34.
    Mitchell D, Willerslev E, Hansen AJ (2005) Damage and repair of ancient DNA. Mutat Res 571:265–276PubMedCrossRefGoogle Scholar
  35. 35.
    Smith S, Morin PA (2005) Optimal storage conditions for highly dilute DNA samples: a role for trehalose as a preserving agent. J Forensic Sci 50:1101–1108PubMedCrossRefGoogle Scholar
  36. 36.
    Murray S, Butler RC, Hardacre A, Timmerman-Vaughan G (2007) Use of quantitative real-time PCR to estimate maize endogenous DNA degradation after cooking or extrusion and in food products. J Agric Chem 55:2231–2239CrossRefGoogle Scholar
  37. 37.
    Anchordoquy TJ, Molina MC (2007) Preservation of DNA. Cell Preserv Technol 5:180–188CrossRefGoogle Scholar
  38. 38.
    Zimmermann J, Hajibabaei M, Blackburn DC et al (2008) DNA damage in preserved specimens and tissue samples: a molecular assessment. Front Zool 5:1–18CrossRefGoogle Scholar
  39. 39.
    Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  40. 40.
    Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  41. 41.
    CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797CrossRefGoogle Scholar
  42. 42.
    Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Res 9: 83–89CrossRefGoogle Scholar
  43. 43.
    Yoder M, De Ley IT, Wm King I et al (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376CrossRefGoogle Scholar
  44. 44.
    Knölke S, Erlacher S, Hausmann A et al (2005) A procedure for combined genitalia extraction and DNA extraction in Lepidoptera. Insect Syst Evol 35:401–409CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.German Centre for Marine Biodiversity Research (DZMB)Senckenberg Research InstituteWilhelmshavenGermany
  2. 2.Bavarian State Collection of Zoology (ZSM)MunichGermany

Personalised recommendations