Advertisement

Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans

  • Josefa GonzálezEmail author
  • Dmitri A. Petrov
Part of the Methods in Molecular Biology book series (MIMB, volume 855)

Abstract

Recent research is starting to shed light on the factors that influence the population and evolutionary dynamics of transposable elements (TEs) and TE life cycles. Genomes differ sharply in the number of TE copies, in the level of TE activity, in the diversity of TE families and types, and in the proportion of old and young TEs. In this chapter, we focus on two well-studied genomes with strikingly different architectures, humans and Drosophila, which represent two extremes in terms of TE diversity and population dynamics. We argue that some of the answers might lie in (1) the larger population size and consequently more effective selection against new TE insertions due to ectopic recombination in flies compared to humans; and (2) in the faster rate of DNA loss in flies compared to humans leading to much faster removal of fixed TE copies from the fly genome.

Key words

Transposable elements Population dynamics Population size Ectopic recombination Drosophila Humans Genetic drift Genetic draft Transposition rate Deletion rate 

Notes

Acknowledgments

We thank Anna-Sophie Fiston-Lavier and all members of the Petrov lab for helpful discussions, Roberto Torres for figure design (www.torresdecomunicacion.org), and the three anonymous reviewers for comments on the manuscript. This work was supported by a Ramon y Cajal grant from the Spanish Ministry of Science and Innovation (MICINN: RYC-2010-07306) to J.G. and by a grant from the NIH (GM 089926) to D.A.P.

References

  1. 1.
    Wicker T, Sabot F, Hua-Van A, et al. (2007) A unified classification system for eukaryotic transposable elements, Nat Rev Genet 8: 973–982.PubMedCrossRefGoogle Scholar
  2. 2.
    Kapitonov VV, Jurka J. (2008) A universal classification of eukaryotic transposable elements implemented in Repbase, Nat Rev Genet 9: 411–412; author reply 414.Google Scholar
  3. 3.
    Cuomo C A, Guldener U, Xu J R, et al. (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization, Science 317: 1400–1402.PubMedCrossRefGoogle Scholar
  4. 4.
    Schnable P S, Ware D, Fulton R S, et al. (2009) The B73 maize genome: complexity, diversity, and dynamics, Science 326: 1112–1115.PubMedCrossRefGoogle Scholar
  5. 5.
    Lander E S, Linton LM, Birren B, et al. (2001) Initial sequencing and analysis of the human genome, Nature 409: 860–921.PubMedCrossRefGoogle Scholar
  6. 6.
    Ashburner M., Golic, K.G., Hawley, R.S. (2005) Drosophila: a laboratory handbook, Cold Spring Harbour Laboratoy Press, New York.Google Scholar
  7. 7.
    Kidwell M G, Lisch D R. (2000) Transposable elements and host genome evolution, Trends Ecol Evol 15: 95–99.PubMedCrossRefGoogle Scholar
  8. 8.
    Feschotte C, Pritham E J. (2007) DNA transposons and the evolution of eukaryotic genomes, Annu Rev Genet 41: 331–368.PubMedCrossRefGoogle Scholar
  9. 9.
    Feschotte C. (2008) Transposable elements and the evolution of regulatory networks, Nat Rev Genet 9: 397–405.PubMedCrossRefGoogle Scholar
  10. 10.
    Lippman Z, Gendrel A V, Black M, et al. (2004) Role of transposable elements in heterochromatin and epigenetic control, Nature 430: 471–476.PubMedCrossRefGoogle Scholar
  11. 11.
    Britten R J, Davidson E H. (1969) Gene regulation for higher cells: a theory, Science 165: 349–357.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang T, Zeng J, Lowe C B, et al. (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53, Proc Natl Acad Sci U S A 104: 18613–18618.PubMedCrossRefGoogle Scholar
  13. 13.
    Bringaud F, Muller M, Cerqueira G C, et al. (2007) Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania, PLoS Pathog 3: 1291–1307.PubMedCrossRefGoogle Scholar
  14. 14.
    Moran J V, DeBerardinis R J, Kazazian H H, Jr. (1999) Exon shuffling by L1 retrotransposition, Science 283: 1530–1534.PubMedCrossRefGoogle Scholar
  15. 15.
    Goodier J L, Kazazian H H, Jr. (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites, Cell 135: 23–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Makalowski W, Mitchell G A, Labuda D. (1994) Alu sequences in the coding regions of mRNA: a source of protein variability, Trends Genet 10: 188–193.PubMedCrossRefGoogle Scholar
  17. 17.
    Gotea V, Makalowski W. (2006) Do transposable elements really contribute to proteomes? Trends Genet 22: 260–267.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu M, Li L, Sun Z. (2007) Transposable element fragments in protein-coding regions and their contributions to human functional proteins, Gene 401: 165–171.PubMedCrossRefGoogle Scholar
  19. 19.
    Agrawal A, Eastman Q M, Schatz D G. (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system, Nature 394: 744–751.PubMedCrossRefGoogle Scholar
  20. 20.
    Pardue M L, DeBaryshe P G. (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres, Annu Rev Genet 37: 485–511.PubMedCrossRefGoogle Scholar
  21. 21.
    Daborn P J, Yen J L, Bogwitz M R, et al. (2002) A single p450 allele associated with insecticide resistance in Drosophila, Science 297: 2253–2256.PubMedCrossRefGoogle Scholar
  22. 22.
    Aminetzach Y T, Macpherson J M, Petrov D A. (2005) Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila, Science 309: 764–767.PubMedCrossRefGoogle Scholar
  23. 23.
    González J, Lenkov K, Lipatov M, et al. (2008) High rate of recent transposable element-induced adaptation in Drosophila melanogaster, PLoS Biol 6: e251.PubMedCrossRefGoogle Scholar
  24. 24.
    González J, Macpherson J M, Petrov D A. (2009) A recent adaptive transposable element insertion near highly conserved developmental loci in Drosophila melanogaster, Mol Biol Evol: 1949–1961.Google Scholar
  25. 25.
    González J, Petrov D A. (2009) The adaptive role of transposable elements in the Drosophila genome, Gene 448: 124–133.PubMedCrossRefGoogle Scholar
  26. 26.
    González J, Karasov T L, Messer P W, et al. (2010) Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila, PLoS Genet 6: e1000905.PubMedCrossRefGoogle Scholar
  27. 27.
    Biemont C, Vieira C. (2006) Genetics: junk DNA as an evolutionary force, Nature 443: 521–524.PubMedCrossRefGoogle Scholar
  28. 28.
    Kazazian H H, Jr. (1998) Mobile elements and disease, Curr Opin Genet Dev 8: 343–350.PubMedCrossRefGoogle Scholar
  29. 29.
    Callinan P A, Batzer M A (2006) Retrotransposable elements and human disease, Vol. 1, Karger, Basel.Google Scholar
  30. 30.
    Quesneville H, Bergman C M, Andrieu O, et al. (2005) Combined evidence annotation of transposable elements in genome sequences, PLoS Comput Biol 1: 166–175.PubMedCrossRefGoogle Scholar
  31. 31.
    Kaminker J S, Bergman C M, Kronmiller B, et al. (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective, Genome Biol 3: RESEARCH0084.Google Scholar
  32. 32.
    Kapitonov V V, Jurka J. (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome, Proc Natl Acad Sci U S A 100: 6569–6574.PubMedCrossRefGoogle Scholar
  33. 33.
    Singh N D, Petrov D A. (2004) Rapid sequence turnover at an intergenic locus in Drosophila, Mol Biol Evol 21: 670–680.PubMedCrossRefGoogle Scholar
  34. 34.
    Petrov D A, Fiston-Lavier A S, Lipatov M, et al. (2011) Population genomics of transposable elements in Drosophila melanogaster, Mol Biol Evol 28: 1633–1644.PubMedCrossRefGoogle Scholar
  35. 35.
    Loreto E L, Carareto C M, Capy P. (2008) Revisiting horizontal transfer of transposable elements in Drosophila, Heredity 100: 545–554.PubMedCrossRefGoogle Scholar
  36. 36.
    Bartolome C, Bello X, Maside X. (2009) Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes, Genome Biol 10: R22.PubMedCrossRefGoogle Scholar
  37. 37.
    Schaack S, Gilbert C, Feschotte C. (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution, Trends Ecol Evol 25: 537–546.PubMedCrossRefGoogle Scholar
  38. 38.
    Charlesworth B, Charlesworth D. (1983) The population dynamics of transposable elements, Genetical Research 42: 1–27.CrossRefGoogle Scholar
  39. 39.
    Brookfield J F. (1991) Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins, Genetics 128: 471–486.PubMedGoogle Scholar
  40. 40.
    Wright S I, Schoen D J. (1999) Transposon dynamics and the breeding system, Genetica 107: 139–148.PubMedCrossRefGoogle Scholar
  41. 41.
    Morgan M T. (2001) Transposable element number in mixed mating populations, Genet Res 77: 261–275.PubMedCrossRefGoogle Scholar
  42. 42.
    Le Rouzic A, Deceliere G. (2005) Models of the population genetics of transposable elements, Genet Res 85: 171–181.PubMedCrossRefGoogle Scholar
  43. 43.
    Le Rouzic A, Boutin T S, Capy P. (2007) Long-term evolution of transposable elements, Proc Natl Acad Sci USA 104: 19375–19380.PubMedCrossRefGoogle Scholar
  44. 44.
    Lu J, Clark A G. (2010) Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila, Genome Res 20: 212–227.PubMedCrossRefGoogle Scholar
  45. 45.
    Strobel E, Dunsmuir P, Rubin G M. (1979) Polymorphisms in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila, Cell 17: 429–439.PubMedCrossRefGoogle Scholar
  46. 46.
    Nuzhdin S V. (1999) Sure facts, speculations, and open questions about the evolution of transposable element copy number, Genetica 107: 129–137.PubMedCrossRefGoogle Scholar
  47. 47.
    Van den Broeck D, Maes T, Sauer M, et al. (1998) Transposon Display identifies individual transposable elements in high copy number lines, Plant J 13: 121–129.PubMedGoogle Scholar
  48. 48.
    De Keukeleire P, Maes T, Sauer M, et al. (2001) Analysis by Transposon Display of the behavior of the dTph1 element family during ontogeny and inbreeding of Petunia hybrida, Mol Genet Genomics 265: 72–81.PubMedCrossRefGoogle Scholar
  49. 49.
    Behura S K. (2006) Molecular marker systems in insects: current trends and future avenues, Mol Ecol 15: 3087–3113.PubMedCrossRefGoogle Scholar
  50. 50.
    Badge R M, Alisch R S, Moran J V. (2003) ATLAS: a system to selectively identify human-specific L1 insertions, Am J Hum Genet 72: 823–838.PubMedCrossRefGoogle Scholar
  51. 51.
    Petrov D A, Aminetzach Y T, Davis J C, et al. (2003) Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila, Mol Biol Evol 20: 880–892.PubMedCrossRefGoogle Scholar
  52. 52.
    Carroll M L, Roy-Engel A M, Nguyen S V, et al. (2001) Large-scale analysis of the Alu Ya5 and Yb8 subfamilies and their contribution to human genomic diversity, J Mol Biol 311: 17–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Myers J S, Vincent B J, Udall H, et al. (2002) A comprehensive analysis of recently integrated human Ta L1 elements, Am J Hum Genet 71: 312–326.PubMedCrossRefGoogle Scholar
  54. 54.
    McCollum A M, Ganko E W, Barrass P A, et al. (2002) Evidence for the adaptive significance of an LTR retrotransposon sequence in a Drosophila heterochromatic gene, BMC Evol Biol 2: 5.PubMedCrossRefGoogle Scholar
  55. 55.
    Franchini L F, Ganko E W, McDonald J F. (2004) Retrotransposon-gene associations are widespread among D. melanogaster populations, Mol Biol Evol 21: 1323–1331.PubMedCrossRefGoogle Scholar
  56. 56.
    Hollister J D, Gaut B S. (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression, Genome Res 19: 1419–1428.PubMedCrossRefGoogle Scholar
  57. 57.
    Hormozdiari F, Hajirasouliha I, Dao P, et al. (2010) Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery, Bioinformatics 26: i350–357.PubMedCrossRefGoogle Scholar
  58. 58.
    Quinlan A R, Clark R A, Sokolova S, et al. (2010) Genome-wide mapping and assembly of structural variant breakpoints in the mouse genome, Genome Res 20: 623–635.PubMedCrossRefGoogle Scholar
  59. 59.
    Fiston-Lavier A S, Carrigan M, Petrov D A, et al. (2011) T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data, Nucleic Acids Res 39: e36.PubMedCrossRefGoogle Scholar
  60. 60.
    Eggleston W B, Johnson-Schlitz D M, Engels W R. (1988) P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster, Nature 331: 368–370.PubMedCrossRefGoogle Scholar
  61. 61.
    Harada K, Yukuhiro K, Mukai T. (1990) Transposition rates of movable genetic elements in Drosophila melanogaster, Proc Natl Acad Sci U S A 87: 3248–3252.PubMedCrossRefGoogle Scholar
  62. 62.
    Nuzhdin S V, Mackay T F. (1995) The genomic rate of transposable element movement in Drosophila melanogaster, Mol Biol Evol 12: 180–181.PubMedCrossRefGoogle Scholar
  63. 63.
    Charlesworth B, Langley C H. (1989) The population genetics of Drosophila transposable elements, Annu Rev Genet 23: 251–287.PubMedCrossRefGoogle Scholar
  64. 64.
    Maside X, Bartolome C, Assimacopoulos S, et al. (2001) Rates of movement and distribution of transposable elements in Drosophila melanogaster: in situ hybridization vs Southern blotting data, Genet Res 78: 121–136.PubMedCrossRefGoogle Scholar
  65. 65.
    Maside X, Bartolome C, Charlesworth B. (2002) S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster, Curr Biol 12: 1686–1691.PubMedCrossRefGoogle Scholar
  66. 66.
    Kidwell M G, Kidwell J F, Sved J A. (1977) Hybrid dysgenesis in Drosophila melanogaster: A syndrome of aberrant traits including mutation, sterility and male recombination, Genetics 86: 813–833.Google Scholar
  67. 67.
    Bingham P M, Kidwell M G, Rubin G M. (1982) The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family, Cell 29: 995–1004.PubMedCrossRefGoogle Scholar
  68. 68.
    Rubin G M, Kidwell M G, Bingham P M. (1982) The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations, Cell 29: 987–994.PubMedCrossRefGoogle Scholar
  69. 69.
    Petrov D A, Schutzman J L, Hartl D L, et al. (1995) Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis, Proc Natl Acad Sci U S A 92: 8050–8054.PubMedCrossRefGoogle Scholar
  70. 70.
    Vasilyeva L A, Bubenshchikova E V, Ratner V A. (1999) Heavy heat shock induced retrotransposon transposition in Drosophila, Genet Res 74: 111–119.PubMedCrossRefGoogle Scholar
  71. 71.
    Seleme M C, Busseau I, Malinsky S, et al. (1999) High-frequency retrotransposition of a marked I factor in Drosophila melanogaster correlates with a dynamic expression pattern of the ORF1 protein in the cytoplasm of oocytes, Genetics 151: 761–771.PubMedGoogle Scholar
  72. 72.
    Bucheton A, Paro R, Sang H M, et al. (1984) The molecular basis of I-R hybrid dysgenesis in Drosophila melanogaster: identification, cloning, and properties of the I factor, Cell 38: 153–163.PubMedCrossRefGoogle Scholar
  73. 73.
    Lozovskaya E R, Scheinker V S, Evgen’ev M B. (1990) A hybrid dysgenesis syndrome in Drosophila virilis, Genetics 126: 619–623.PubMedGoogle Scholar
  74. 74.
    Prud'homme N, Gans M, Masson M, et al. (1995) Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster, Genetics 139: 697–711.PubMedGoogle Scholar
  75. 75.
    Moran J V, Holmes S E, Naas T P, et al. (1996) High frequency retrotransposition in cultured mammalian cells, Cell 87: 917–927.PubMedCrossRefGoogle Scholar
  76. 76.
    Brouha B, Schustak J, Badge R M, et al. (2003) Hot L1s account for the bulk of retrotransposition in the human population, Proc Natl Acad Sci U S A 100: 5280–5285.PubMedCrossRefGoogle Scholar
  77. 77.
    Kazazian H H, Jr. (1999) An estimated frequency of endogenous insertional mutations in humans, Nat Genet 22: 130.PubMedCrossRefGoogle Scholar
  78. 78.
    Li X, Scaringe W A, Hill K A, et al. (2001) Frequency of recent retrotransposition events in the human factor IX gene, Hum Mutat 17: 511–519.PubMedCrossRefGoogle Scholar
  79. 79.
    Deininger P L, Batzer M A. (1993) Evolution of retroposons, In Evolutionary Biology (Hecht, M K, Ed.), Plenum Press, New York.Google Scholar
  80. 80.
    Ewing A D, Kazazian H H, Jr. (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes, Genome Res 20: 1262–1270.PubMedCrossRefGoogle Scholar
  81. 81.
    Huang C R, Schneider A M, Lu Y, et al. (2010) Mobile interspersed repeats are major structural variants in the human genome, Cell 141: 1171–1182.PubMedCrossRefGoogle Scholar
  82. 82.
    Messer P W. (2009) Measuring the rates of spontaneous mutation from deep and large-scale polymorphism data, Genetics 182: 1219–1232.PubMedCrossRefGoogle Scholar
  83. 83.
    Laski F A, Rio D C, Rubin G M. (1986) Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing, Cell 44: 7–19.PubMedCrossRefGoogle Scholar
  84. 84.
    Andrews J D, Gloor G B. (1995) A role for the KP leucine zipper in regulating P element transposition in Drosophila melanogaster, Genetics 141: 587–594.PubMedGoogle Scholar
  85. 85.
    Simmons M J, Bucholz L M. (1985) Transposase titration in Drosophila melanogaster: a model of cytotype in the P-M system of hybrid dysgenesis, Proc Natl Acad Sci U S A 82: 8119–8123.PubMedCrossRefGoogle Scholar
  86. 86.
    Hartl D L, Lohe A R, Lozovskaya E R. (1997) Regulation of the transposable element mariner, Genetica 100: 177–184.PubMedCrossRefGoogle Scholar
  87. 87.
    Lohe A R, Hartl D L. (1996) Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation, Mol Biol Evol 13: 549–555.PubMedCrossRefGoogle Scholar
  88. 88.
    Yoder J A, Walsh C P, Bestor T H. (1997) Cytosine methylation and the ecology of intragenomic parasites, Trends Genet 13: 335–340.PubMedCrossRefGoogle Scholar
  89. 89.
    Lyko F, Ramsahoye B H, Jaenisch R. (2000) DNA methylation in Drosophila melanogaster, Nature 408: 538–540.PubMedCrossRefGoogle Scholar
  90. 90.
    Lyko F. (2001) DNA methylation learns to fly, Trends Genet 17: 169–172.PubMedCrossRefGoogle Scholar
  91. 91.
    Kunert N, Marhold J, Stanke J, et al. (2003) A Dnmt2-like protein mediates DNA methylation in Drosophila, Development 130: 5083–5090.PubMedCrossRefGoogle Scholar
  92. 92.
    Mandrioli M, Borsatti F. (2006) DNA methylation of fly genes and transposons, Cell Mol Life Sci 63: 1933–1936.PubMedCrossRefGoogle Scholar
  93. 93.
    Mangeat B, Turelli P, Caron G, et al. (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature 424: 99–103.PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang H, Yang B, Pomerantz R J, et al. (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA, Nature 424: 94–98.PubMedCrossRefGoogle Scholar
  95. 95.
    Schumann G G. (2007) APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition, Biochem Soc Trans 35: 637–642.PubMedCrossRefGoogle Scholar
  96. 96.
    Han J S. (2010) Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions, Mob DNA 1: 15.PubMedCrossRefGoogle Scholar
  97. 97.
    Ikeda T, Abd El Galil K H, Tokunaga K, et al. (2011) Intrinsic restriction activity by apolipoprotein B mRNA editing enzyme APOBEC1 against the mobility of autonomous retrotransposons, Nucleic Acids Res.Google Scholar
  98. 98.
    Gendrel A V, Lippman Z, Yordan C, et al. (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1, Science 297: 1871–1873.PubMedCrossRefGoogle Scholar
  99. 99.
    Kondo Y, Issa J P. (2003) Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells, J Biol Chem 278: 27658–27662.PubMedCrossRefGoogle Scholar
  100. 100.
    Martens J H, O’Sullivan R J, Braunschweig U, et al. (2005) The profile of repeat-associated histone lysine methylation states in the mouse epigenome, EMBO J 24: 800–812.PubMedCrossRefGoogle Scholar
  101. 101.
    Huda A, Marino-Ramirez L, Jordan I K. (2010) Epigenetic histone modifications of human transposable elements: genome defense versus exaptation, Mob DNA 1: 2.PubMedCrossRefGoogle Scholar
  102. 102.
    Vieira C, Fablet M, Lerat E. (2006) Intra- and transspecific clues to understanding the dynamics of transposable elements, In Genome Dynamics and Stability (Lankenau, D H, Volff, J N, Eds.), Springer-Verlag, Berlin.Google Scholar
  103. 103.
    Soifer H S, Zaragoza A, Peyvan M, et al. (2005) A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon, Nucleic Acids Res 33: 846–856.PubMedCrossRefGoogle Scholar
  104. 104.
    Yang N, Kazazian H H, Jr. (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells, Nat Struct Mol Biol 13: 763–771.PubMedCrossRefGoogle Scholar
  105. 105.
    Malone C D, Hannon G J. (2009) Molecular Evolution of piRNA and Transposon Control Pathways in Drosophila, Cold Spring Harb Symp Quant Biol: 225–234.Google Scholar
  106. 106.
    Blumenstiel J P. (2011) Evolutionary dynamics of transposable elements in a small RNA world, Trends Genet 27: 23–31.PubMedCrossRefGoogle Scholar
  107. 107.
    Tabara H, Sarkissian M, Kelly W G, et al. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans, Cell 99: 123–132.PubMedCrossRefGoogle Scholar
  108. 108.
    Ketting R F, Haverkamp T H, van Luenen H G, et al. (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD, Cell 99: 133–141.PubMedCrossRefGoogle Scholar
  109. 109.
    Blumenstiel J P, Hartl D L. (2005) Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis, Proc Natl Acad Sci U S A 102: 15965–15970.PubMedCrossRefGoogle Scholar
  110. 110.
    Brennecke J, Malone C D, Aravin A A, et al. (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing, Science 322: 1387–1392.PubMedCrossRefGoogle Scholar
  111. 111.
    Charlesworth B, Sniegowski P, Stephan W. (1994) The evolutionary dynamics of repetitive DNA in eukaryotes, Nature 371: 215–220.PubMedCrossRefGoogle Scholar
  112. 112.
    Finnegan D J. (1992) Transposable elements, Curr Opin Genet Dev 2: 861–867.PubMedCrossRefGoogle Scholar
  113. 113.
    McDonald J F, Matyunina L V, Wilson S, et al. (1997) LTR retrotransposons and the evolution of eukaryotic enhancers, Genetica 100: 3–13.PubMedCrossRefGoogle Scholar
  114. 114.
    Montgomery E, Charlesworth B, Langley C H. (1987) A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster, Genet Res 49: 31–41.PubMedCrossRefGoogle Scholar
  115. 115.
    Boissinot S, Davis J, Entezam A, et al. (2006) Fitness cost of LINE-1 (L1) activity in humans, Proc Natl Acad Sci U S A 103: 9590–9594.PubMedCrossRefGoogle Scholar
  116. 116.
    Langley C H, Montgomery E, Hudson R, et al. (1988) On the role of unequal exchange in the containment of transposable element copy number, Genet Res 52: 223–235.PubMedCrossRefGoogle Scholar
  117. 117.
    Montgomery E A, Huang S M, Langley C H, et al. (1991) Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution, Genetics 129: 1085–1098.PubMedGoogle Scholar
  118. 118.
    Charlesworth B, Lapid A, Canada D. (1992) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution, Genet Res 60: 103–114.PubMedCrossRefGoogle Scholar
  119. 119.
    Charlesworth B, Lapid A, Canada D. (1992) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements, Genet Res 60: 115–130.PubMedCrossRefGoogle Scholar
  120. 120.
    Bartolome C, Maside X, Charlesworth B. (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster, Mol Biol Evol 19: 926–937.PubMedCrossRefGoogle Scholar
  121. 121.
    Hoogland C, Biemont C. (1996) Chromosomal distribution of transposable elements in Drosophila melanogaster: test of the ectopic recombination model for maintenance of insertion site number, Genetics 144: 197–204.PubMedGoogle Scholar
  122. 122.
    Hill W G, Robertson A. (1966) The effect of linkage on limits to artificial selection, Genet Res 8: 269–294.PubMedCrossRefGoogle Scholar
  123. 123.
    Dolgin E S, Charlesworth B. (2008) The effects of recombination rate on the distribution and abundance of transposable elements, Genetics 178: 2169–2177.PubMedCrossRefGoogle Scholar
  124. 124.
    Suh D S, Choi E H, Yamazaki T, et al. (1995) Studies on the transposition rates of mobile genetic elements in a natural population of Drosophila melanogaster, Mol Biol Evol 12: 748–758.PubMedGoogle Scholar
  125. 125.
    Vieira C, Biemont C. (1997) Transposition rate of the 412 retrotransposable element is independent of copy number in natural populations of Drosophila simulans, Mol Biol Evol 14: 185–188.PubMedCrossRefGoogle Scholar
  126. 126.
    Pasyukova E G, Nuzhdin S V, Filatov D A. (1998) The relationship between the rate of transposition and transposable element copy number for copia and Doc retrotransposons of Drosophila melanogaster, Genet Res 72: 1–11.PubMedCrossRefGoogle Scholar
  127. 127.
    Maside X, Assimacopoulos S, Charlesworth B. (2000) Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster, Genet Res 75: 275–284.PubMedCrossRefGoogle Scholar
  128. 128.
    Kreitman M. (1983) Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster, Nature 304: 412–417.PubMedCrossRefGoogle Scholar
  129. 129.
    Li H, Stephan W. (2006) Inferring the demographic history and rate of adaptive substitution in Drosophila, PLoS Genet 2: e166.PubMedCrossRefGoogle Scholar
  130. 130.
    Thornton K, Andolfatto P. (2006) Approximate Bayesian inference reveals evidence for a recent, severe bottleneck in a Netherlands population of Drosophila melanogaster, Genetics 172: 1607–1619.PubMedCrossRefGoogle Scholar
  131. 131.
    Takahata N. (1993) Allelic genealogy and human evolution, Mol Biol Evol 10: 2–22.PubMedGoogle Scholar
  132. 132.
    Petrov D A, Lozovskaya E R, Hartl D L. (1996) High intrinsic rate of DNA loss in Drosophila, Nature 384: 346–349.PubMedCrossRefGoogle Scholar
  133. 133.
    Petrov D A, Sangster T A, Johnston J S, et al. (2000) Evidence for DNA loss as a determinant of genome size, Science 287: 1060–1062.PubMedCrossRefGoogle Scholar
  134. 134.
    Levis R W, Ganesan R, Houtchens K, et al. (1993) Transposons in place of telomeric repeats at a Drosophila telomere, Cell 75: 1083–1093.PubMedCrossRefGoogle Scholar
  135. 135.
    Ma J, Bennetzen J L. (2006) Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice, Proc Natl Acad Sci U S A 103: 383–388.PubMedCrossRefGoogle Scholar
  136. 136.
    Weber B, Schmidt T. (2009) Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain, Chromosome Res 17: 379–396.PubMedCrossRefGoogle Scholar
  137. 137.
    Cordaux R, Udit S, Batzer M A, et al. (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element, Proc Natl Acad Sci U S A 103: 8101–8106.PubMedCrossRefGoogle Scholar
  138. 138.
    Wang W, Zheng H, Fan C, et al. (2006) High rate of chimeric gene origination by retroposition in plant genomes, Plant Cell 18: 1791–1802.PubMedCrossRefGoogle Scholar
  139. 139.
    Baudry C, Malinsky S, Restituito M, et al. (2009) PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia, Genes Dev 23: 2478–2483.PubMedCrossRefGoogle Scholar
  140. 140.
    Esnault C, Maestre J, Heidmann T. (2000) Human LINE retrotransposons generate processed pseudogenes, Nat Genet 24: 363–367.PubMedCrossRefGoogle Scholar
  141. 141.
    Speek M. (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes, Mol Cell Biol 21: 1973–1985.PubMedCrossRefGoogle Scholar
  142. 142.
    Nigumann P, Redik K, Matlik K, et al. (2002) Many human genes are transcribed from the antisense promoter of L1 retrotransposon, Genomics 79: 628–634.PubMedCrossRefGoogle Scholar
  143. 143.
    Bejerano G, Lowe C B, Ahituv N, et al. (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon, Nature 441: 87–90.PubMedCrossRefGoogle Scholar
  144. 144.
    Lowe C B, Bejerano G, Haussler D. (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes, Proc Natl Acad Sci U S A 104: 8005–8010.PubMedCrossRefGoogle Scholar
  145. 145.
    David J R, Capy P. (1988) Genetic variation of Drosophila melanogaster natural populations, Trends Genet 4: 106–111.PubMedCrossRefGoogle Scholar
  146. 146.
    Lachaise D, Cariou, M-L, David, J R, Lemeunier, F, Tsacas F, et al (1988) Historical biogeography of the Drosophila melanogaster species subgroup, Evol Biol 22: 159–225.CrossRefGoogle Scholar
  147. 147.
    Glinka S, Ometto L, Mousset S, et al. (2003) Demography and natural selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach, Genetics 165: 1269–1278.PubMedGoogle Scholar
  148. 148.
    Orengo D J, Aguade M. (2004) Detecting the footprint of positive selection in a european population of Drosophila melanogaster: multilocus pattern of variation and distance to coding regions, Genetics 167: 1759–1766.PubMedCrossRefGoogle Scholar
  149. 149.
    Przeworski M. (2002) The signature of positive selection at randomly chosen loci, Genetics 160: 1179–1189.PubMedGoogle Scholar
  150. 150.
    González J, Macpherson J M, Messer P W, et al. (2009) Inferring the strength of selection in Drosophila under complex demographic models, Mol Biol Evol 26: 513–526.PubMedCrossRefGoogle Scholar
  151. 151.
    Petrov D A, Hartl D L. (1998) High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups, Mol Biol Evol 15: 293–302.PubMedCrossRefGoogle Scholar
  152. 152.
    van de Lagemaat L N, Gagnier L, Medstrand P, et al. (2005) Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates, Genome Res 15: 1243–1249.PubMedCrossRefGoogle Scholar
  153. 153.
    Katzourakis A, Pereira V, Tristem M. (2007) Effects of recombination rate on human endogenous retrovirus fixation and persistence, J Virol 81: 10712–10717.PubMedCrossRefGoogle Scholar
  154. 154.
    Arndt P F, Petrov D A, Hwa T. (2003) Distinct changes of genomic biases in nucleotide substitution at the time of Mammalian radiation, Mol Biol Evol 20: 1887–1896.PubMedCrossRefGoogle Scholar
  155. 155.
    Baudry E, Kryger P, Allsopp M, et al. (2004) Whole-genome scan in thelytokous-laying workers of the Cape honeybee (Apis mellifera capensis): central fusion, reduced recombination rates and centromere mapping using half-tetrad analysis, Genetics 167: 243–252.PubMedCrossRefGoogle Scholar
  156. 156.
    Biessmann H, Valgeirsdottir K, Lofsky A, et al. (1992) HeT-A, a transposable element specifically involved in “healing” broken chromosome ends in Drosophila melanogaster, Mol Cell Biol 12: 3910–3918.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BiologyStanford UniversityStanfordUSA
  2. 2.Institute of Evolutionary Biology (CSIC-UPF)BarcelonaSpain

Personalised recommendations